トップページへ

2025 (Current Year) Faculty Courses School of Engineering Undergraduate major in Electrical and Electronic Engineering

Discrete-Time System

Academic unit or major
Undergraduate major in Electrical and Electronic Engineering
Instructor(s)
Kei Sakaguchi
Class Format
Lecture (Face-to-face)
Media-enhanced courses
-
Day of week/Period
(Classrooms)
3-4 Mon (WL1-301(レクチャーシアター))
Class
-
Course Code
EEE.M241
Number of credits
100
Course offered
2025
Offered quarter
4Q
Syllabus updated
Nov 11, 2025
Language
Japanese

Syllabus

Course overview and goals

In discrete time system such as digital signal processing, z-transform is essensial to understand a system behavior and analysis; same as contenious system's Laplace transform. The z-transform is widely apply to the linear time invarient systems. The lecture topics are, discrete time signal and systems, z-transforme and inverse z-transform, z-transforme property, transmission function and frequency response, FIR and IIR filters, s-z transform and system stability.

The aim of this course is to understand z-transform to analize time discrete systems. In linear time invarient systems, time domain and frequency domain basic comprehension will be accomplished.

Course description and aims

This course will give students understanding time domain and frequency domain responses of time discrete systems. For analytical method, z-transform is essential and basic mathematics.

Keywords

differential equation, linear time invarient system, convolution, z-transform, inverse z-transform, transmission function, frequency response, FIR filter, IIR filter, s-z transform, digital filter, digital signal processing, system stability

Competencies

  • Specialist skills
  • Intercultural skills
  • Communication skills
  • Critical thinking skills
  • Practical and/or problem-solving skills
  • ・Fundamental specialist skills on EEE

Class flow

At the end of class, students are given exercise problems related to the lecture given that day to solve. To prepare for class, students should read the course schedule section and check what topics will be covered. Required learning should be completed outside of the classroom for preparation and review purposes.

Course schedule/Objectives

Course schedule Objectives
Class 1

Overview of discrete time system

Differential equation for discretetime systems

Class 2

Impulse response and convolution

Linear time invarient system and output signal by convolusion

Class 3

z-transform and invers z-transform

Function of z-transform and invers z-transform

Class 4

Transfer function and stability

Stable pole placement in z-plain

Class 5

Transfer function and frequency response

Output signal obtained form transfer function and frequency response

Class 6

Design of FIR filter

FIR filter design

Class 7

Design of IIR filter

IIR filter design using s-z transform

Study advice (preparation and review)

To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.

Textbook(s)

Ohta, Masaya. Introduction to Digital Signal Processing. Tokyo: Corona Publishing; ISBNISBN978-4-339-00857-9. (Japanese)

Reference books, course materials, etc.

Oishi, Kunio. Introduction to Digital Signal Processing with C Programming Language. Tokyo: Corona Publishing; ISBN978-4-339-00847-0. (Japanese)
Higuchi, Kawamata. Digital Signal Processing (2nd ed.). Tokyo: Morikita Publishing; ISBN978-4-627-79212-8. (Japanese)

Evaluation methods and criteria

Students' knowledge of difference equation for discrete time system, z-transform and their ability to apply them to problems will be assessed. Final exams 50%, exercise problems 50% will be standard for evaluation.

Related courses

  • EEE.M211 : Fourier Transform and Laplace Transform
  • EEE.C311 : Advanced Electronic Circuits
  • EEE.C321 : Digital Electronic Circuits

Prerequisites

Students must have successfully completed Fourie Transform and Laplace Transform (EEE.M211) or have equivalent knowledge.

Contact information (e-mail and phone) Notice : Please replace from ”[at]” to ”@”(half-width character).

Kei Sakaguchi, sakaguchi.k.59c0[at]m.isct.ac.jp

Office hours

Contact by e-mail in advance to schedule an appointment.