2025 (Current Year) Faculty Courses School of Life Science and Technology Undergraduate major in Life Science and Technology
Organic Chemistry IV (carbonyl compounds and amines)
- Academic unit or major
- Undergraduate major in Life Science and Technology
- Instructor(s)
- Tomoko Matsuda / Kohji Seio / Mako Kamiya / Hiroshi Tsutsumi / Satoshi Okada / Yoshiaki Masaki
- Class Format
- Lecture
- Media-enhanced courses
- -
- Day of week/Period
(Classrooms) - Class
- -
- Course Code
- LST.A217
- Number of credits
- 200
- Course offered
- 2025
- Offered quarter
- 4Q
- Syllabus updated
- Mar 19, 2025
- Language
- Japanese
Syllabus
Course overview and goals
The objects of bioscience and biotechnology are apparently organic compounds. Thus, this lecture systematically and comprehensively describes fundamental topics necessary for the use of or the research on organic compounds, including the knowledge and theory on their nomenclature, nature, analysis, reactions, synthesis, and utility. The contents consist of the IUPAC nomenclature, the electronic states and bonding of molecules, three-dimensional structures of molecules, the instrumental analysis of molecular structures (NMR, IR, Ms), reactions of each functional group, the carbon-carbon bond formation and organic synthesis, and utility of natural and artificial organic compounds, which will be lectured according to the textbook, with the theoretical background and relationship between the topics being mentioned.
At the outset, this course allows the student to firmly learn the general knowledge and theory common to individual topics, such as the nomenclature of compounds, electronic states and bonding of molecules and their nature and structures owing to the former, and the electronic theory of organic chemistry essential to the description of reaction mechanisms. At the next stage, the students will proceed to study reactions unique to each functional group and the instrumental analysis of molecular structures, which are not only memorized but also well interpreted by them on the basis of the above general notion. While reviewing the previous two steps, the students are requested to increase their ability to understand the application of the fundamental topics, for example, the synthesis of organic compounds and utility of natural and artificial compounds. As a whole, this lecture will provide students basic knowledge and theory of organic chemistry and, at the same time, its covering area of utility of organic compounds.
Course description and aims
By the end of this course, students will be able to:
1. Understand the chemistry of enols, enolates, and aldol condensation.
2. Understand the property and reaction of carboxylic acids and their derivatives.
3. Understand the property and reaction of amines and their derivatives.
4. Understand the reactivity of benzene substituents.
5. Understand the chemistry of ester enolates and Claisen condensation.
Keywords
Enol, aldol condensation, carboxylic acid, amine, reactivity of benzene substituents, Claisen condensation
Competencies
- Specialist skills
- Intercultural skills
- Communication skills
- Critical thinking skills
- Practical and/or problem-solving skills
Class flow
The lecture is to be done in order according to the textbook. (Thus, students are encouraged to familiarize the expected pages of the textbook in advance to the class and to review them after the class.)
Course schedule/Objectives
Course schedule | Objectives | |
---|---|---|
Class 1 | Enols, enolates, aldol condensation | enols, enolate ions, keto-enol equilibrium, halogenation and alkylation of aldehydes and ketones, aldol condensation |
Class 2 | Conjugate addition reaction | property and conjugate addition of unsaturated aldehydes and ketones, conjugate addition reaction of enolate ions |
Class 3 | Carboxylic acids | nomenclature, property and synthesis of carboxylic acids |
Class 4 | Property and reaction of the carboxylic acid derivatives | acyl halides, acid anhydrides, ester, amides, reduction of carboxylic acids, bioactivity of carboxylic acids |
Class 5 | Exam 1 | Exam for comprehensive understanding of classes 1〜4 and contents of organic chemistry I-III. |
Class 6 | Comparison of the carboxylic acid derivatives | relative reactivity of the carboxylic acid derivatives, chemistry of acyl halides and the carboxylic acid anhydrides |
Class 7 | Amides | amides, Hofmann rearrangement, alkanenitriles |
Class 8 | Property of amines | nomenclature, structure and property of amines |
Class 9 | Synthesis and reaction of amines, and summary of the classes 6-9 | synthesis of amines, Hofmann elimination, Mannich reaction, nitrosation comprehensive understanding of classes 6〜9, earlier classes and contents of organic chemistry I-III |
Class 10 | Exam 2 | Exam for comprehensive understanding of classes 6〜9, earlier classes and contents of organic chemistry I-III |
Class 11 | Reactivity of the benzene substituents | benzylic position, phenols |
Class 12 | Reaction of benzene derivatives | Claisen rearrangement, oxidation of phenols, biological oxidation and reduction |
Class 13 | Ester enolates and the Claisen condensation | ester enolates, reaction of beta-dicarbonyl compound enolates and Claisen condensation |
Class 14 | Active methylene compounds | Michael addition, synthesis of alpha-hydroxyl ketones |
Study advice (preparation and review)
To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.
Textbook(s)
Organic Chemistry - Structure and Function, 8th ed., K. P. C. Vollhardt and N, E. Schore, W. H. Freeman and Co., New York, 2019; The Japanese translation, 8th ed., Kagakudojin, Kyoto, 2019. (Japanese)
Reference books, course materials, etc.
Study Guide and Solutions - Manual for Organic Chemistry, 8th ed., N, E. Schore, W. H. Freeman and Co., New York, 2020; The Japanese translation, 8th ed., Kagakudojin, Kyoto, 2020. (Japanese)
Evaluation methods and criteria
Three exams (70%) and quizes (30%)
Related courses
- LST.A202 : Organic Chemistry I (alkanes and haloalkanes)
- LST.A207 : Organic Chemistry II (alcohols and alkenes)
- LST.A212 : Organic Chemistry III (benzene and ketones)
- LST.A333 : Bioorganic Chemistry
- LST.A343 : Pharmaceutical Chemistry
- LST.A343 : Pharmaceutical Chemistry
Prerequisites
No prerequisites.
Other
If we need to take counter measures against the corona virus by limiting the number of the student, priority may be given to the registration of a student in the Department of Life Science and Technology.
As there is no duplication of the contents from Organic Chemistry I (alkanes and haloalkanes) to IV (carbonyl compounds and amines), the systematic study in this order will maximize its efficiency. Therefore, students are advised to enroll all of them in serial order. After completion of these courses, more advanced lectures, Bioorganic Chemistry and Pharmaceutical Chemistry, are available. Thus, students can proceed to the higher level of organic chemistry by taking one or both of them, dependent on their interest.