2025 (Current Year) Faculty Courses School of Materials and Chemical Technology Department of Chemical Science and Engineering Graduate major in Chemical Science and Engineering
Advanced Solid State Chemistry I
- Academic unit or major
- Graduate major in Chemical Science and Engineering
- Instructor(s)
- Akira Ohtomo
- Class Format
- Lecture (Face-to-face)
- Media-enhanced courses
- -
- Day of week/Period
(Classrooms) - 3-4 Mon
- Class
- -
- Course Code
- CAP.A461
- Number of credits
- 100
- Course offered
- 2025
- Offered quarter
- 1Q
- Syllabus updated
- Mar 19, 2025
- Language
- English
Syllabus
Course overview and goals
[Summary of the course] In this course, the electronic properties of solids will be explained in association with nature of the chemical bonding and crystallographically derived periodic potential. The topics include the electric conductivity and electronic structures of metals, semiconductors, insulators, superconductors, and quantum confined structures.
[Aim of the course] Based on the history that solid-state chemistry and solid-state physics have been complementarily developed, themes in each class are designed so that students understand close relations in the knowledges of solid-state chemistry and solid-state physics. In the beginning of each class, for example, explanations of a principle of chemistry are given, followed by a brief exposition of the related theory in the viewpoint of physics. Modern chemistry has been developed by discovery of a useful compound followed by synthesis and design of related compounds based on the knowledge of the physical properties. Meanwhile, new physical properties and functions are often found from among the codified group of compounds in a certain principle. From this point of view, this course encourages students to discuss and do exercises about problems.
Course description and aims
At the end of this course, students will be able to:
1) explain the electronic properties of solids in association with nature of the chemical bonding and crystallographically derived periodic potential.
2) explain the principles that govern the electronic properties of solids based on molecular orbital theory, free-electron theory, and band theory.
Keywords
Energy band, free-electron theory, density of state function, reciprocal lattice, systematic absences, x-ray diffraction, Hall effect, metal-insulator transition, Mott insulator, quantum well, high-Tc superconducting cuprate
Competencies
- Specialist skills
- Intercultural skills
- Communication skills
- Critical thinking skills
- Practical and/or problem-solving skills
Class flow
This course will proceed in the following order: (1) chemical bonding, (2) band theory, (3) crystallography, and (4) electric conduction. In the last day, exercise problems and interpretation of the answers will be given to assess the students’ level of understanding.
Course schedule/Objectives
Course schedule | Objectives | |
---|---|---|
Class 1 | General introduction to solid-state chemistry | Explain the course objectives. |
Class 2 | Properties of atoms and chemical bonding | Explain roles of covalent bonding and ionic bonding in a chemical bond. |
Class 3 | Band theory | Explain the band theory based on free-electron theory. |
Class 4 | Crystallography and crystal structures | Explain a band dispersion in the reciprocal space and/or k-space. |
Class 5 | Electronic conductivity in metals and semiconductors | Explain methods of the electrical conductivity measurement and their principles. |
Class 6 | Spectroscopic characterizations of electronic structures | Explain features of the electronic spectroscopies and their principles. |
Class 7 | Exercise problems to assess the students’ level of understanding and interpretation of the answers | Use the exercise problems to better understand the topics covered, and evaluate one’s own progress. |
Study advice (preparation and review)
To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.
Textbook(s)
R. J. D. Tilley, "Understanding Solids: The Science of Materials", 2nd Ed., Wiley; ISBN: 978-1-118-42328-8.
E.Zolotoyabko, "Introduction to Solid State Physics for Materials Engineers", 1st Ed., Wiley-VCH; ISBN: 978-3527348848.
Reference books, course materials, etc.
A. R. West, "Basic Solid State Chemistry", 2nd Ed., Wiley; ISBN: 978-0471987567.
The other course materials are provided during class and uploaded on OCW-i.
Evaluation methods and criteria
Students will be assessed on their achievements of learning outcomes based on final exam (60%), the quality of writing reports (30%), and exercise problems (10%).
Related courses
- CAP.A462 : Advanced Solid State Chemistry II
Prerequisites
No prerequisites.
Contact information (e-mail and phone) Notice : Please replace from ”[at]” to ”@”(half-width character).
Akira Ohtomo: ohtomo.a.aa[at]m.titech.ac.jp
Office hours
Contact by e-mail in advance to schedule an appointment.