2025 (Current Year) Faculty Courses School of Materials and Chemical Technology Undergraduate major in Chemical Science and Engineering
Transport Phenomena Engineering (Fluid dynamics ・Heat Transfer)
- Academic unit or major
- Undergraduate major in Chemical Science and Engineering
- Instructor(s)
- Shiro Yoshikawa / Shinsuke Mori
- Class Format
- Lecture (Face-to-face)
- Media-enhanced courses
- -
- Day of week/Period
(Classrooms) - 5-6 Fri
- Class
- -
- Course Code
- CAP.G302
- Number of credits
- 100
- Course offered
- 2025
- Offered quarter
- 1Q
- Syllabus updated
- Apr 2, 2025
- Language
- Japanese
Syllabus
Course overview and goals
Fluids flowing in equipment used in chemical processes have velocity and temperature distributions that must be controlled. Therefore, process engineers are required to understand these fluid dynamics and heat transfer. In this lecture, students learn how to derive differential equations and analyze them for fluid dynamics and heat transfer. Based on this understanding, energy operation and design methods in chemical devices will be studied.
Course description and aims
The goal of this course is for students to acquire a deep understanding of momentum and heat transfer phenomena, to acquire the ability to quantitatively estimate velocity and temperature distributions, to solve complex problems related to fluid dynamics and heat transfer when designing and operating chemical equipment, and to acquire the ability to design equipment to perform energy operations.
Keywords
Analysis of momentum transport phenomena, energy equation, energy operation
Competencies
- Specialist skills
- Intercultural skills
- Communication skills
- Critical thinking skills
- Practical and/or problem-solving skills
Class flow
The lecture will proceed in the following order: analysis of mass transport phenomena, analysis of energy transfer, and energy operations.
Course schedule/Objectives
Course schedule | Objectives | |
---|---|---|
Class 1 | Derivation of the momentum equations of a fluid: Navier-Stokes equations (1) | Understand the meaning of the Navier-Stokes equations. |
Class 2 | Derivation of velocity distributions in various flow fields: Navier-Stokes equations (2) | Velocity distributions based on the Navier-Stokes equations can be derived. |
Class 3 | Heat Exchangers: Overall heat transfer coefficient and logarithmic mean temperature difference, design of heat exchanger | Understand the concept of the overall heat transfer coefficient and logarithmic mean temperature difference, as well as the design method of heat exchangers. |
Class 4 | Boundary Layer Theory・Energy equation: Analysis of Boundary Layer Flow, Derivation of temperature distribution in a fluid | Understand the concept of boundary layer. The velocity and temperature distribution of a fluid can be estimated. |
Class 5 | Evaporation Operation: Evaporation operations, evaporation equipment, multiple-effect evaporator | Understand the concepts of evaporation operation, evaporation equipment, and multiple-effect evaporators. To be able to calculate heat balance and heat transfer for multiple-effect evaporators. |
Class 6 | Heat Transfer with Phase Change: Boiling and condensation heat transfer, phase change behavior and heat transfer enhancement effects | Understand the concepts of boiling and condensation heat transfer, and the relationship between phase change behavior and heat transfer enhancement effects. |
Class 7 | Practice problems to assess the level of understanding and explanation of the answers | Understand the course contents and solve practice problems. |
Study advice (preparation and review)
To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.
Textbook(s)
Materials such as slides used in class will be distributed via T2SCHOLA, so textbooks are not specified.
Reference books, course materials, etc.
Shiro YOSHIKAWA, "Basic Transport Phenomena" (ベーシック移動現象論) Electronic version Kagaku Dojin (2015)
R.B.Bird, W.E.Stewart, E.N.Lightfoot: "Transport Phenomena" Revised 2nd Edition, Wiley(2006)
All text books with the titles Chemical Engineering, Transport Phenomena, Fluid Mechanics, and Heat Transfer. In addition, lecture materials will be distributed as appropriate.
Evaluation methods and criteria
Comprehension of analysis based on the equations of momentum and energy, and understanding of various device designs for energy operations will be evaluated. Grades will be based on the final exam and assignments and exercises given during the lecture.
Related courses
- CAP.G201 : Chemical Engineering Basics
- CAP.G202 : Chemical Engineering I (Phase & Interface Engineering)
- CAP.G203 : Chemical Engineering II (Molecular Diffusion)
- CAP.G204 : Chemical Engineering III (Reaction Engineering Basics)
- CAP.G205 : Chemical Engineering III (Transport Phenomena Basics)
- CAP.G303 : Reaction Engineering
- CAP.G305 : Separation Engineering I (Fluid Phase System)
- CAP.G306 : Separation Engineering II (Solid phase system)
- CAP.G304 : Computational Chemical Engineering
Prerequisites
It is strongly recommended that students take Chemical Engineering IV (CAP.G205:Transport Phenomena Basics).