2025 (Current Year) Faculty Courses School of Materials and Chemical Technology Undergraduate major in Materials Science and Engineering
Lattice Defects and Dislocation
- Academic unit or major
- Undergraduate major in Materials Science and Engineering
- Instructor(s)
- Toshiyuki Fujii / Xiao-Wen Lei
- Class Format
- Lecture (Face-to-face)
- Media-enhanced courses
- -
- Day of week/Period
(Classrooms) - 3-4 Tue / 3-4 Fri
- Class
- -
- Course Code
- MAT.M303
- Number of credits
- 200
- Course offered
- 2025
- Offered quarter
- 2Q
- Syllabus updated
- Mar 19, 2025
- Language
- Japanese
Syllabus
Course overview and goals
Defects in crystalline solid plays important roles in strengthening of materials. This class aims to understand various crystaline defects, especially the fundamentals of dislocation related phenomena through the practice and execise.
Stress-strain curve, various strengthening mechanisms in metals are understood from the view point of dislocation theory.
Course description and aims
The aims of this class is to understand the fundamental properties of dislocation and various strengthning mechanism in terms of dislocation theory.
After this class, students will :
Be able to define kinds of defect in crystalline solid (vacancy, interstitial atoms, dislocation, grain boundary, etc.)
Have a knowledge of screw dislocation and edge dislocation.
Be able to compute the dislocation stress at field point
Be aware of stacking fault introduced by partial dislocation.
Understand the dislocation intermediated plastic flow and strengthening.
Understand the mechanism of dislocation multiplication.
Be able to compute interaction force between dislocation, solute atom, precipitate, dispersoid in terms of weak and strong obstacles.
Understand the relation between strain-rate and temperature dependencies of dislocation hardening.
Keywords
lattice defects, dislocation, slip deformation, elasticity, partial dislocation, stacking fault, strengthening mechanisms, thermal activation process of a dislocation motion
Competencies
- Specialist skills
- Intercultural skills
- Communication skills
- Critical thinking skills
- Practical and/or problem-solving skills
Class flow
Towards the end of class, students are given exercise problems related to what is taught on that day to solve.
Course schedule/Objectives
Course schedule | Objectives | |
---|---|---|
Class 1 | Defects in crystalline materials | Do the exercises on P. 6 in the textbook |
Class 2 | Slip deformation of crystals | Do the exercises on P. 17 in the textbook |
Class 3 | Description of a dislocation | Do the exercises on P. 17 in the textbook |
Class 4 | Review of elasticity theory | Do the exercises on P. 17 in the textbook |
Class 5 | The stress field around a dislocation | Do the exercises on P. 20 in the textbook |
Class 6 | Forces on a dislocation Achievement evaluation and general practice (1) | Learn the Peach-Koehler force Do the exercises on P. 1 to P. 20 in the textbook |
Class 7 | Dislocations in crystals | Do the exercises on P. 27 in the textbook |
Class 8 | Partial dislocation and stacking fault | Do the exercises on P. 27 in the textbook |
Class 9 | Multiplication and cutting of dislocations | Do the exercises on P. 37 in the textbook |
Class 10 | Plastic deformation of pure metals | Do the exercises on P. 37 in the textbook |
Class 11 | Various strengthening mechanisms | Do the exercises on P. 45 in the textbook |
Class 12 | Strengthning by precipitates and solid solute atoms | Do the exercises on P. 45 in the textbook |
Class 13 | Strain rate and temperature dependence of strength | Do the exercises on P. 51 in the textbook |
Class 14 | Achievement evaluation and general practice (2) | Do the exercises on P. 27 to P. 51 in the textbook |
Study advice (preparation and review)
To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.
Textbook(s)
All materials used in class can be found on T2SCHOLA.
Reference books, course materials, etc.
Masaharu Kato, "Nyumon teniron", Shoukabo. Masaharu Kato, Kazuhiro Nagata, "Toite wakaru zairyo kougaku", Maruzen.
Evaluation methods and criteria
Students’ course scores are based on exercise problems and midterm exams (50%) and final exams (50%).
Related courses
- MAT.M201 : Fundamentals of Crystallography
- MAT.M205 : Fundamentals of Stress and Strain, and Deformation of Metals
Prerequisites
No prerequisites are necessary, but enrollment in the related courses is desirable.