2025 (Current Year) Faculty Courses School of Engineering Department of Electrical and Electronic Engineering Graduate major in Energy Science and Informatics
Advanced Polymer Design for Energy Materials
- Academic unit or major
- Graduate major in Energy Science and Informatics
- Instructor(s)
- Reiko Saito
- Class Format
- Lecture (Face-to-face)
- Media-enhanced courses
- -
- Day of week/Period
(Classrooms) - 3-4 Fri
- Class
- -
- Course Code
- ESI.H503
- Number of credits
- 100
- Course offered
- 2025
- Offered quarter
- 1Q
- Syllabus updated
- Mar 19, 2025
- Language
- English
Syllabus
Course overview and goals
This course focuses on polymers, and covers the fundamentals of energy materials and the design of effective functionality of polymers for metergy materials. Synthetic strategy of polymer emergy materials by bottom-up and top-down methods, basic theory of novel or enhanced physical properties resulted in miniaturization, and the concept of combination of materials are essential in the field of materials science to develop fine and novel functionalities. These approaches are not only useful for nanomaterials, but are applicable to design energy devices and other materials. This course introduces polymer materials used ofr lithium ion battery, , inclusion compounds and fine polymer particles as organic nanocomposite. Students will have the chance to tackle practical problems by applying knowledge acquired through this course. This course facilitates students’ understanding materials and ability to develop novel materials.
Course description and aims
At the end of this course, students will be able to: 1)Explain architecural control and fine polymerization of polymers for energy materials and the specific limitation and problems on the synthesis of energy materilas. 2) Explain nanomaterials. . 3) Explain specific properties and features of nanomaterials, and the difference from bulk materials. 4) Design novel materials and solve the prospective problems for the system design.
Keywords
Nanomaterials, supramolecular chemistry, polymer particles, composites. lithium ion battery, secondary battery, energy conversion materials, binder, separator
Competencies
- Specialist skills
- Intercultural skills
- Communication skills
- Critical thinking skills
- Practical and/or problem-solving skills
Class flow
Before coming to class, students should read the course schedule and check what topics will be covered. Required learning should be completed outside of the classroom for preparation and review purposes.
Attendance is taken in every class.
Course schedule/Objectives
Course schedule | Objectives | |
---|---|---|
Class 1 | Overview of polymerization and polymers as energy materials | Explain the definition of polymerizaton and energy materials. Students must make sure they understand what significance the course holds for them by checking their learning portfolio. |
Class 2 | Polymer binders for lithium ion battery | Understand and describe the effect of nanostructures of polymer on lithium ion battery |
Class 3 | polymer electrolyte and separators | Understand and describe the desing concept of polymer electrolytes and separators in battery. |
Class 4 | Nanomaterials for energy science and enginnering | Explain the concept of nanocomposites. |
Class 5 | Properties of polymer particles and polymer-inorganic nanoparticles | Explain and describe the sysnthesis and properties of polymer-inorganic particles |
Class 6 | Emulsion polymerization (Smith-Ewart theory) | Explain the definition of Preparation of emulsion. Nucleation of initiation on emulsion polymerization. Smith-Ewart theory. Cases 1,2, and 3. |
Class 7 | Summary | Explain the energy materials from viewpoint of polymer |
Study advice (preparation and review)
To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.
Textbook(s)
None required.
Reference books, course materials, etc.
1) P.A.Lovell, M. S. El-Aasser, "Emulsion polymerization and emulsion polymers", Wiley ISBN: 978-0-471-96746-0
2) Some materials used in class can be found on T2SCHOLA.
Evaluation methods and criteria
1) Students will be assessed on their understanding of synthesis and properties of nanomaterials, and their ability to apply them to solve problems. 2) Students’ course scores are based on midterm and final exams (80%) and exercise problems (20%). 3) The weights for learning outcomes 1 us 40, and 2 and 3 are 30 units each. 4) Full attendance is compulsory. 5) The instructor may fail a student if he/she repeatedly comes to class late or resubmits reports too often.
Related courses
- ESI.A405 : Interdisciplinary Energy Materials Science 1
- ESI.A406 : Interdisciplinary Energy Materials Science 2
Prerequisites
No prerequisites are necessary, but enrollment in the related courses is desirable.