2025 (Current Year) Faculty Courses School of Engineering Department of Mechanical Engineering Graduate major in Mechanical Engineering
Self-excited vibration
- Academic unit or major
- Graduate major in Mechanical Engineering
- Instructor(s)
- Yutaka Nakano
- Class Format
- Lecture
- Media-enhanced courses
- -
- Day of week/Period
(Classrooms) - Class
- -
- Course Code
- MEC.D433
- Number of credits
- 100
- Course offered
- 2025
- Offered quarter
- 3Q
- Syllabus updated
- Apr 3, 2025
- Language
- English
Syllabus
Course overview and goals
【Course description】
This lecture deals with self-excited vibration phenomena. The lecture aim and the lecture plan are as follows.
【Aims】
The course aims to teach basic concepts and recent developments related to mechanical vibrations, structural dynamics, acoustics, and vibration control.
Course description and aims
By the end of this course, students will be able to:
(1) Understand the difference between self-excited vibration and forced vibration
(2) Understand the generation mechanism of self-excited vibration
(3) Explain the countermeasures against self-excited vibrations in consideration of their generation mechanism
Keywords
Self-excited vibration, Stability criterion, Unstable vibration, Negative damping, Friction induced vibration, Parametric excitation, Dry friction, Surging, Galloping, Time delay, Chatter, Coulomb friction, Flutter
Competencies
- Specialist skills
- Intercultural skills
- Communication skills
- Critical thinking skills
- Practical and/or problem-solving skills
Class flow
All classes will be given ONLINE (using Zoom system). Handouts are given in class when necessary. Exercise problems will be assigned.
Course schedule/Objectives
Course schedule | Objectives | |
---|---|---|
Class 1 | Introduction | Find some examples of self-excited vibration |
Class 2 | Stability analysis | Understand the stability analysis |
Class 3 | Unstable vibration caused by negative damping | Understand the unstable vibration caused by negative damping |
Class 4 | Unstable vibration caused by time delay | Understand the unstable vibration caused by time delay |
Class 5 | Unstable vibration caused by asymmetries of stiffness matrix 1 | Understand the friction vibration caused by the asymmetries of stiffness matrix |
Class 6 | Unstable vibration caused by asymmetries of stiffness matrix 2 | Understand flutter |
Class 7 | Countermeasure against self-excited vibration and review of the whole course | Understand the countermeasures against self-excited vibrations and review of the whole course |
Study advice (preparation and review)
To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.
Textbook(s)
None required.
Reference books, course materials, etc.
J. P. Den Hartog著, “Mechanical vibrations”, Dover Publications, ISBN-13: 978-0486647852
Singiresu S. Rao著, “Mechanical Vibrations”, Prentice Hall; 5th Revised, ISBN-13: 978-9810687120
The Japan Society of Mechanical Engineers, “Mechanical Engineering Handbook Fundamentals (α2) mechanical dynamics”, The Japan Society of Mechanical Engineers, ISBN-13: 978-4888981163
Evaluation methods and criteria
Learning achievement is evaluated by exercise problems(30%) and a final exam(70%). However, if a face-to-face final examination cannot be held due to the spread of COVID-19 infection or other reasons, it will be evaluated by reports assigned for classes.
Related courses
- Mechanical vibrations (MEC.D201)
- Vibration analysis (MEC.D311)
- Rotor dynamics (MEC.D432)
Prerequisites
Students must have successfully completed both Mechanical vibrations (MEC.D201) and Vibration Analysis (MEC.D311) or have equivalent knowledge.
Other
Class Format:Livestream
Methods for responding to questions and discussions:
・During classes and short breaks, the lecturer will answer questions and discuss using the chat function of Zoom or direct calls.
・The lecturer will accept questions by e-mail or in the Q&A forum on Science Tokyo LMS.