2025 (Current Year) Faculty Courses School of Engineering Department of Mechanical Engineering Graduate major in Energy Science and Informatics
Physical Chemistry for High Temperature Processes -Smelting and Refining Processes-
- Academic unit or major
- Graduate major in Energy Science and Informatics
- Instructor(s)
- Yoshinao Kobayashi / Kenichi Kawamura / Miyuki Hayashi / Mitsutoshi Ueda
- Class Format
- Lecture (Face-to-face)
- Media-enhanced courses
- -
- Day of week/Period
(Classrooms) - 5-6 Tue
- Class
- -
- Course Code
- ESI.J403
- Number of credits
- 100
- Course offered
- 2025
- Offered quarter
- 1Q
- Syllabus updated
- Mar 26, 2025
- Language
- English
Syllabus
Course overview and goals
This course aims to apply the fundamental and applied chemical thermodynamics to the prediction of practical process of smelting and refining of metals. Solution theory is the main approach which requires proper understanding of chemical potential and activity of the components of the system consequently leading to the concentration relation. In the series of the classes, the instructor mainly explains about models such as regular solution focusing on the enthalpy and entropy term and thermodynamic index such as impurity capacity determined by slag basicity and activity coefficient of impurity, which methods can be acquired through many exercises.
Course description and aims
【Target】Metal smelting and refining processes are composed of reduction of metal ore and removal of impurities from metals by the reaction with molten compounds and gaseous phases. Acquisition of applied thermodynamics for proper prediction of the final state is the goal of this course. This course provides the fundamental relations between thermodynamic functions and models to be applied to the practical processes.
【Theme】 Activity of each components of the system is of significant importance to proper understanding of the smelting and refining process of metals. This course takes up mathematical treatment of the activities and activity coefficients including derivation of the value of one from that of the other components. Nature of the slag is described in viewpoint of impurity capacity which leads to prediction of impurity distribution deciding refining efficiency.
Keywords
Thermodynamics, activity, chemical potential, solution theory, impurity capacity, impurity destribution
Competencies
- Specialist skills
- Intercultural skills
- Communication skills
- Critical thinking skills
- Practical and/or problem-solving skills
Class flow
Review and derivation of thermodynamic relations will be made mainly on solution theory, followed by the comprehension check of solving typcial practical problems.
Course schedule/Objectives
Course schedule | Objectives | |
---|---|---|
Class 1 | General introduction, activity of Raoultian and Henrian standard | Conversion of the activity standard from Raoultian to Henrian |
Class 2 | Review of activity of 1mass% Henrian standard and interaction coefficients | Derivation of activity relative to 1mass% Henrian stanrdard by way of interation coefficient |
Class 3 | Partial and integral molar quantity, the Gibbs-Duhem relation, the Schumann method | Derivation of acitivity by way of the Gibbs-Duhem relation |
Class 4 | Themodynamics of mixture solutoin, regular solution model | Prediction of activity coefficient on the assumption of regural solution model |
Class 5 | Slag basicity, viscosity, structure | Relation between slag basicity and polymerization degree |
Class 6 | Thermodynamics for removal of impurities, inclusions and impurity capacity of slags | Estimation of phosphorus distribution ratio from phosphate capacity |
Class 7 | Behaviour of impurities in practical processes, final examination for level check | Final test for achievement evaluation of the total course |
Study advice (preparation and review)
To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.
Textbook(s)
None specified.
Reference books, course materials, etc.
Metallurgical Physical Chemistry, Maruzen
Thermodynamics of solids by Richard A. Swalin, John Wiley & Sons
Stoichiometry and thermodynamics of metallurgical processes by Y. K. Rao, Cambridge University Press
Physical Chemistry of Melts in Metallurgy by F.D. Richardson, Academic Press
Evaluation methods and criteria
Exercise will be made to evaluate the comprehension for each lecture. Final test wil be givne for total achievment. The grading will be made on the basis of the score of exercises(30%) and final test(70%).
Related courses
- ENR.J402 : Physical Chemistry for High Temperature Processes -Thermodynamics-
- ENR.J404 : Physical Chemistry for High Temperature Processes -Oxidation of Metals-
- MAT.M404 : Transport Phenomena at HighTemperature
- MAT.M409 : Themodynamics for Phase Equilibria
Prerequisites
Students must have successfully completed 'Themodynamics of Materials' (MAT.A203.R)and 'Physical Chemietry in Metals' (MAT.M302.E) or have equivalent knowledge.
Contact information (e-mail and phone) Notice : Please replace from ”[at]” to ”@”(half-width character).
kobayashi.y.at[at]m.titech.ac.jp
Office hours
Contact by e-mail in advance to schedule an appointment.