2025 (Current Year) Faculty Courses School of Science Department of Chemistry Graduate major in Energy Science and Informatics
Advanced Lecture on Crystal Structure and Correlation with Properties of Solids
- Academic unit or major
- Graduate major in Energy Science and Informatics
- Instructor(s)
- Masatomo Yashima
- Class Format
- Lecture (Livestream)
- Media-enhanced courses
- -
- Day of week/Period
(Classrooms) - 5-6 Tue
- Class
- -
- Course Code
- ESI.I420
- Number of credits
- 100
- Course offered
- 2025
- Offered quarter
- 1Q
- Syllabus updated
- Mar 26, 2025
- Language
- English
Syllabus
Course overview and goals
This lecture discusses the fundamentals and applications of inorganic materials, their crystal structures and their structure-property correlations. In this lecture, I describe the experimental techniques such as X-ray powder diffraction, synchrotron X-ray powder diffraction, neutron powder diffraction and Raman scattering, which are important in the characterization of industrial materials. I also present the analysis techniques as Rietveld method and maximum-entropy method. We discuss the structure-property correlation of materials for clean energy and environments (solid oxide fuel cells, exhaust gas catalyst) and ferroelectric materials.
By this lecture, the students aim to understand the crystal structure of inorganic materials at an atomic scale, to discuss the correlation between structure and properties, and to design the materials.
Course description and aims
You will be able …
1) to understand the structure and property of inorganic materials at an atomic scale and at an electronic level
2) to understand the literature including the crystallographic data and results of crystal structure analysis.
3) to draw and understand the crystal structure
4) to estimate the interatomic distances, bond angles, coordination number and bond valence sum (BVS).
Keywords
inorganic materials, crystal structures, structure-property correlations, X-ray powder diffraction, synchrotron X-ray powder diffraction, neutron powder diffraction, industrial materials, Rietveld method, maximum-entropy method, materials for clean energy and environments, materials for solid oxide fuel cells, exhaust gas catalyst, ferroelectric materials
Competencies
- Specialist skills
- Intercultural skills
- Communication skills
- Critical thinking skills
- Practical and/or problem-solving skills
Class flow
Students need to download, print out and study the slides before each lecture. The lecture is done using the slides. In the lecture, group-discussion is done and the students need to solve the quiz.
Course schedule/Objectives
Course schedule | Objectives | |
---|---|---|
Class 1 | Introduction: Crystal structure | to draw and understand the crystal structure |
Class 2 | Oxide-ion conductors (1): Fluorite-type and perovskite-type oxide-ion conductors | to understand the crystal structure and oxide-ion conduction in fluorite-type and perovskite-type oxide-ion conductors |
Class 3 | Oxide-ion conductors (2): Layered perovskite-type oxide-ion conductors | to understand the crystal structure and oxide-ion conduction in layered perovskite-type oxide-ion conductors |
Class 4 | lithium-ion and proton conductors | to understand the crystal structure and ion conduction in lithium-ion and proton conductors |
Class 5 | dielectric materials and photocatalyts | to understand the structure and properties of dielectric materials and photocatalyts |
Class 6 | topics | to understand the correlation of the crystal structure with properties in topics |
Class 7 | Summary and/or examination test | To understand well the contents |
Study advice (preparation and review)
To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.
Textbook(s)
None
Reference books, course materials, etc.
A. R. West, "Solid State Chemistry and its Applications", 2nd Ed., John Wiley & Sons, (2014); R. J. D. Tilly, Understanding Solids, 2nd Ed., John Wiley & Sons, (2013); T. Kaino and R. Kanno, "Materials Science: Fundamentals and Application", Tokyo Kagaku Dojin Co. Ltd., (2008); Peter Atkins, et al. "Shriver and Atkins' Inorganic Chemistry," Fifth Edition, Oxford University Press, (2009); T. Sakuma, Ceramic Materials, Kaibundo Co. Ltd., (1990); Y. Wakabayashi, Physics of Structure-Property Correlation and X-ray Diffraction, Maruzen Pub. Co., (2017).
Evaluation methods and criteria
Evaluation whether you understand the inorganic materials at atomic/electronic levels, through the group discussion, quiz, report and/or examination test.
Related courses
- CHM.B335 : Chemistry of Solids
- CHM.B333 : Crystal Chemistry
Prerequisites
None
Contact information (e-mail and phone) Notice : Please replace from ”[at]” to ”@”(half-width character).
Masatomo Yashima: yashima.m.5864[at]m.isct.ac.jp
Office hours
Contact by e-mail in advance to schedule an appointment.