2025 (Current Year) Faculty Courses School of Science Undergraduate major in Physics
Thermodynamics (Physics) (Exercise) A
- Academic unit or major
- Undergraduate major in Physics
- Instructor(s)
- Kazuya Fujimoto / Tomohiro Sasamoto
- Class Format
- Exercise
- Media-enhanced courses
- -
- Day of week/Period
(Classrooms) - Class
- A
- Course Code
- PHY.S219
- Number of credits
- 010
- Course offered
- 2025
- Offered quarter
- 3Q
- Syllabus updated
- Apr 2, 2025
- Language
- Japanese
Syllabus
Course overview and goals
Thermodynamics is important for understanding the states of matter and their changes. In this exercise course, students learn the basics of thermodynamics such as the laws of thermodynamics, entropy, free energy, and equilibrium conditions. By completing this course, students will understand the laws of thermodynamics and some basic concepts such as entropy and free energy as well as will the way how to describe these laws and concepts in mathematical formulae.
Course description and aims
By the end of this course, you will be able to:
(1) Understand laws of thermodynamics.
(2) Understand the concepts of entropy, free energy, chemical potential. etc.
(3) Master mathematical descriptions of thermodynamics and explain physical meaning behind them.
Keywords
Internal energy, first law of thermodynamics, quasistatic process, isochoric change, isobaric change, isothermal change, adiabatic change, Carnot cycle, second law of thermodynamics, efficiency, thermodynamical temperature, entropy, reversible and irreversible processes, equilibrium condition, free energy, Maxwell relations, phase equilibrium, chemical potential, hollow space radiation, rubber elasticity, magnetic materials.
Competencies
- Specialist skills
- Intercultural skills
- Communication skills
- Critical thinking skills
- Practical and/or problem-solving skills
Class flow
This exercise course will proceed along the counterpart lecture course [Thermodynamics (Physics) (Lecture)]. Handout questions will be given at each class. You are expected to solve all of them by the beginning of the next class. A presenter is assigned for each question and they ought to show the answer at the blackboard (or whiteboard) in front of the class.
Course schedule/Objectives
Course schedule | Objectives | |
---|---|---|
Class 1 | Laws of thermodynamics | To understand the first and second laws of thermodynamics. |
Class 2 | Entropy | To understand the concept of entropy. |
Class 3 | Equilibrium condition and free energy | To explain equilibrium condition using free energy. |
Class 4 | Thermodynamic functions | To learn how to derive Maxwell relations |
Class 5 | Phase equilibrium and chemical potential | To explain phase equilibrium using chemical potential. |
Class 6 | Application in thermodynamics I | To explain rubber elasticity using thermodynamics. |
Class 7 | Application in thermodynamics II | To explain the properties of magnetic materials using thermodynamics. |
Study advice (preparation and review)
To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.
Textbook(s)
See the counterpart lecture course.
Reference books, course materials, etc.
J.M. Smith, Hendrick Van Ness, Michael Abbott, "Introduction to Chemical Engineering Thermodynamics" (The Mcgraw-Hill Chemical Engineering Series).
Michael Abbott and Hendrick Van Ness, "Schaum's Outline Series Theory and Problems of Thermodynamids" (Mcgraw-Hill Inc.)
Evaluation methods and criteria
Your score will be evaluated by class performance (~30%) and submission of written assignment (~70%).
Related courses
- PHY.S209 : Thermodynamics (Physics) (Lecture)
Prerequisites
Nothing.