2025年度 (最新) 学院等開講科目 情報理工学院 数理・計算科学系 数理・計算科学コース
連続系の数理
- 開講元
- 数理・計算科学コース
- 担当教員
- 西畑 伸也 / 荒井 迅 / 梅原 雅顕 / 鈴木 咲衣
- 授業形態
- 講義
- メディア利用科目
- -
- 曜日・時限
(講義室) - 月3-4 (W8E-306(W832)) / 木3-4 (W8E-306(W832))
- クラス
- -
- 科目コード
- MCS.T401
- 単位数
- 200
- 開講時期
- 2025年度
- 開講クォーター
- 1Q
- シラバス更新日
- 2025年3月19日
- 使用言語
- 英語
シラバス
授業の目的(ねらい)、概要
連続的に変化する非線形現象の数理構造を理解する為に,それをモデル化した微分方程式系が利用される.本講義では,微分方程式系の解析手法を紹介する.全体を前半と後半に二分し,前半では解の存在定理などの基礎的な一般論を,後半では解の時間大域挙動を調べるためのより進んだ手法を解説する.
到達目標
【テーマ】 本講義では,非線形現象の数理構造を解析するために必要な基礎概念および手法について講義する.常微分方程式系を対象とし,解の存在を証明したのち,各論として安定性解析,分岐理論,極限周期軌道について講じる.
【到達目標】 本講義を履修することにより,非線形現象を数学的に解析する一般的な手法を習得し,それらを具体的な問題に応用できるようになることを目標とする.
キーワード
常微分方程式
学生が身につける力
- 専門力
- 教養力
- コミュニケーション力
- 展開力 (探究力又は設定力)
- 展開力 (実践力又は解決力)
授業の進め方
常微分方程式の基本的な事項を講義する.
授業計画・課題
授業計画 | 課題 | |
---|---|---|
第1回 | 局所解の存在 | 講義の内容を理解する. |
第2回 | 局所解の一意性 | 講義の内容を理解する. |
第3回 | 解のパラメータに関する連続性と可微分性 | 講義の内容を理解する. |
第4回 | 大域解の存在 | 講義の内容を理解する. |
第5回 | 自励系の線形近似 | 講義の内容を理解する. |
第6回 | 平衡点の安定性、不安定性 | 講義の内容を理解する. |
第7回 | 線形化による安定性解析 | 講義の内容を理解する. |
第8回 | Lyapunovの方法 | 講義の内容を理解する. |
第9回 | Lyapunovの方法による安定性解析 | 講義の内容を理解する. |
第10回 | 安定多様体、不安定多様体および中心多様体 | 講義の内容を理解する. |
第11回 | 中心多様体定理による安定性解析 | 講義の内容を理解する. |
第12回 | 分岐理論の基礎 | 講義の内容を理解する. |
第13回 | 極限周期軌道 | 講義の内容を理解する. |
第14回 | ポアンカレ・ベンディクソンの定理 | 講義の内容を理解する. |
準備学修(事前学修・復習)等についての指示
学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。
教科書
特になし.
参考書、講義資料等
特になし.
成績評価の方法及び基準
レポートを課し,理解度を評価する.
関連する科目
- MCS.T211 : 応用微分積分
- MCS.T301 : ベクトル解析と関数解析
- MCS.T311 : 応用微分方程式論
- MCS.T304 : ルベーグ積分論
履修の条件・注意事項
特になし.