トップページへ

2025年度 (最新) 学院等開講科目 情報理工学院 数理・計算科学系

応用微分方程式論

開講元
数理・計算科学系
担当教員
西畑 伸也
授業形態
講義 (対面型)
メディア利用科目
-
曜日・時限
(講義室)
月5-6 (W9-322(W931)) / 木5-6 (W9-322(W931))
クラス
-
科目コード
MCS.T311
単位数
200
開講時期
2025年度
開講クォーター
2Q
シラバス更新日
2025年3月19日
使用言語
日本語

シラバス

授業の目的(ねらい)、概要

様々な現象を記述する偏微分方程式の数理解析の基礎について解説する.
偏微分方程式の導出およびフーリエ級数による解法を理解し,諸問題に応用する能力を身につける.

到達目標

本講義を履修することにより,以下の知識と能力を修得する.
1) 様々な現象のモデルとして偏微分方程式を導出することができる.
2) フーリエ級数の理論を正しく理解し,偏微分方程式を解くことができる.
3) 各方程式の持つ特徴から解の性質を正しく理解することができる.

キーワード

偏微分方程式,熱方程式,波動方程式,Laplace方程式,フーリエ級数

学生が身につける力

  • 専門力
  • 教養力
  • コミュニケーション力
  • 展開力 (探究力又は設定力)
  • 展開力 (実践力又は解決力)

授業の進め方

偏微分方程式の導出および解法についての基礎的な事項を講義する.講義内容の理解を深めるために,演習問題が出題される.

授業計画・課題

授業計画 課題
第1回 偏微分方程式の例 講義の内容を理解する.
第2回 熱方程式の導出 講義の内容を理解する.
第3回 最大値原理とその応用 講義の内容を理解する.
第4回 フーリエの方法と変数分離 講義の内容を理解する.
第5回 フーリエ級数の理論 講義の内容を理解する.
第6回 ヒルベルト空間と完全正規直交系 講義の内容を理解する.
第7回 フーリエ級数の完全性 講義の内容を理解する.
第8回 フーリエ級数による熱方程式の解法 講義の内容を理解する.
第9回 波動方程式の導出 講義の内容を理解する.
第10回 エネルギー保存則とその応用 講義の内容を理解する.
第11回 波動方程式におけるダランベールの解 講義の内容を理解する.
第12回 フーリエ級数による波動方程式の解法 講義の内容を理解する.
第13回 ラプラス方程式の導出 講義の内容を理解する.
第14回 ラプラス方程式の解法 講義の内容を理解する.
第15回 平均値の定理とその応用 講義の内容を理解する.

準備学修(事前学修・復習)等についての指示

学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。

教科書

偏微分方程式 (サイエンスライブラリ現代数学への入門)、加藤 義夫 (著)

参考書、講義資料等

特に指定しない.

成績評価の方法及び基準

到達度を期末試験等により評価する

関連する科目

  • LAS.M101 : 微分積分学第一・演習

履修の条件・注意事項

履修の条件は設けないが,微分積分の基礎を理解していることが望ましい.