トップページへ

2025年度 (最新) 学院等開講科目 物質理工学院 材料系

統計力学(M)

開講元
材料系
担当教員
合田 義弘 / 中辻 寬 / 田原 正樹
授業形態
講義
メディア利用科目
-
曜日・時限
(講義室)
クラス
-
科目コード
MAT.M202
単位数
200
開講時期
2025年度
開講クォーター
3Q
シラバス更新日
2025年3月19日
使用言語
日本語

シラバス

授業の目的(ねらい)、概要

Boltzmannの関係式に基づき,Lagrangeの未定乗数法を用いて,小正準集合の分配関数を求める数学的な手法について説明する。さらに,正準集合や大正準集合に対する分配関数とHelmholtzエネルギーやグランドポテンシャルの関係について解説する。
これらを用いて,格子振動,電子,磁気スピン等に起因するエントロピーを評価し,EinsteinモデルやDebye モデルにより定積比熱を解析的に記述する方法について紹介する。

到達目標

・熱力学と統計力学の関係を理解する。
・小正準集合・正準集合・大正準集合の違いを理解する。
・構成粒子が区別できる集合と区別できない集合に対する分配関数の違いを理解する。

キーワード

Boltzmannの関係式,正準集合,分配関数,熱力学関数,Einsteinモデル,Debyeモデル,Fermi粒子,Bose粒子

学生が身につける力

  • 専門力
  • 教養力
  • コミュニケーション力
  • 展開力 (探究力又は設定力)
  • 展開力 (実践力又は解決力)

授業の進め方

問題演習を行う。

授業計画・課題

授業計画 課題
第1回 Boltzmannの関係式 Boltzmannの関係式が熱力学と統計力学の関係を表すことを理解する。
第2回 Lagrangeの未定乗数法 等重率の原理に基づき,小正準集団の分配関数をLagrangeの未定乗数法を用いて導く方法を理解する。
第3回 分配関数 分配関数を用いて,内部エネルギー,Helmholtzエネルギー,エントロピーを導出する。
第4回 熱力学の基本法則 熱力学の第一法則,第二法則および第三法則について説明する。
第5回 熱力学関数とLegendre変換 Legendre変換を用いて種々の熱力学関数を導出する。
第6回 Einsteinの比熱モデル 量子調和振動子を理解し,Einsteinモデルを用いて固体の定積比熱を記述する解析式を導出する。
第7回 Debyeの比熱モデル Debyeモデルを用いて固体の定積比熱を記述する。また,EinsteinモデルとDebyeモデルの違いを理解する。
第8回 完全気体 完全気体の分配関数を導出する。
第9回 Fermi粒子 Fermi-Dirac統計と自由電子気体について説明する。
第10回 Bose粒子 Bose-Einstein統計とBose-Einstein凝縮について説明する。
第11回 局在スピン系の磁化 局在スピン系についての分配関数から,定積比熱や磁化を導出する。
第12回 気体の相平衡 質量作用の法則やClausius-Clapeyronの式を理解する。
第13回 正準集合とHelmholtzエネルギー 正準集合と小正準集合の違いを理解した上で分配関数を説明し,Helmholtzエネルギーを導出する。
第14回 大正準集合とグランドポテンシャル 大正準集合と正準集合の違いを理解した上で分配関数を説明し,グランドポテンシャルを導出する。

準備学修(事前学修・復習)等についての指示

学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。

教科書

授業中に指示する。また、必要に応じて資料を配布する。

参考書、講義資料等

キッテル「熱物理学」など

成績評価の方法及び基準

レポート課題や期末試験の総合得点により評価する。その際,100点満点の総合得点の60点以上を合格とする。

関連する科目

  • MAT.A203 : 材料量子力学
  • MAT.A204 : 材料熱力学
  • MAT.M206 : 金属の電子構造と物性

履修の条件・注意事項

「材料量子力学」および「材料熱力学」を修得済であることが望ましい。
「物理化学(統計力学)」および「統計力学(C)」とは重複履修禁止。

連絡先 (メール、電話番号) ※”[at]”を”@”(半角)に変換してください。

合田義弘 (gohda[at]mct.isct.ac.jp)
中辻寛 (nakatsuji.k.aa[at]m.titech.ac.jp)
田原正樹 (tahara.m.aa[at]m.titech.ac.jp)
2025年度分に関しては合田に連絡の事。

オフィスアワー

電子メールで事前予約すること。