トップページへ

2025年度 (最新) 学院等開講科目 工学院 システム制御系 システム制御コース

機械学習フレームワーク

開講元
システム制御コース
担当教員
北村 光司
授業形態
講義 (対面型)
メディア利用科目
-
曜日・時限
(講義室)
木5-6 (M-374(H131))
クラス
-
科目コード
SCE.I406
単位数
100
開講時期
2025年度
開講クォーター
2Q
シラバス更新日
2025年4月1日
使用言語
日本語

シラバス

授業の目的(ねらい)、概要

本講義では、Python開発環境を用いて、機械学習についての考え方や実施方法について講義および演習を行い、基本的な機械学習を扱える能力を涵養する。具体的には、機械学習の基礎、教師なし機械学習、教師あり機械学習について扱い、基本的な手法について紹介するとともに、近年の機械学習で扱われることが多い深層学習の基本的な考え方についても扱う。

到達目標

本講義を履修することによって次の能力を修得する。
1)Pythonプログラミングの基礎および機械学習の基礎的な考え方を理解でき、講義で扱わない手法についても書籍などの資料を読んで考え方や活用方法を理解できる。
2) 自分の目的に応じて、必要な機械学習法を選んで活用できる。

キーワード

機械学習、プログラミング,Python,アルゴリズム

学生が身につける力

  • 専門力
  • 教養力
  • コミュニケーション力
  • 展開力 (探究力又は設定力)
  • 展開力 (実践力又は解決力)

授業の進め方

毎回の講義の前半で講義を行い、後半に講義内容に応じた演習問題に取り組んでもらいます。

授業計画・課題

授業計画 課題
第1回 Pythonによる開発環境の準備とPythonの基礎 Python開発環境を準備し、基本的なプログラミングを行えるようになる。
第2回 機械学習の基礎と教師なし機械学習の基礎と演習 機械学習の基礎を理解し、教師なし機械学習の手順を理解できるようになる。
第3回 演習 実際のデータを対象にして、教師なし機械学習を行うことができるようになる。
第4回 教師あり機械学習の基礎と演習 教師あり機械学習の手順を理解できるようになる。
第5回 演習 実際のデータを対象にして、教師あり機械学習を行うことができるようになる。
第6回 深層学習の基礎と演習 深層学習の手順について理解できるようになる。
第7回 演習 実際のデータを対象にして、深層学習を行うことができるようになる。

準備学修(事前学修・復習)等についての指示

学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。

教科書

特になし

参考書、講義資料等

講義時に配布します。

成績評価の方法及び基準

3回の演習課題の成果で成績を評価する。

関連する科目

  • SCE.Z401 : サイバーフィジカルイノベーション

履修の条件・注意事項

特になし

その他

演習のある講義のため,受講者数を制限する場合があります.