2025年度 (最新) 学院等開講科目 理学院 数学系
代数学第一
- 開講元
- 数学系
- 担当教員
- 鈴木 正俊
- 授業形態
- 講義/演習 (対面型)
- メディア利用科目
- -
- 曜日・時限
(講義室) - 木3-6 (M-B104(H103))
- クラス
- -
- 科目コード
- MTH.A301
- 単位数
- 110
- 開講時期
- 2025年度
- 開講クォーター
- 1Q
- シラバス更新日
- 2025年3月19日
- 使用言語
- 日本語
シラバス
授業の目的(ねらい)、概要
本講義の主要なテーマは(可換)環と環上の加群に関する基本的な諸概念と性質である。本講義では,最初に(可換)環とそのイデアルおよび剰余環についての基本的な事項について復習した後,環上の加群について,部分加群・剰余加群,線型写像・準同型定理,直和・直積,完全列,Hom加群,自由加群などを含む基礎事項について網羅的に履修する。その後,環および加群の局所化について履修する。最後にアルチン環やネーター環について学ぶ。各回で講義内容に関する問題演習を行う。本講義は引き続いて行われる「代数学第二」に続くものである。
環とそのイデアルおよび環上の加群の概念,代数学において最も基本的な概念の一つであり,適用範囲の非常に広いものである。一方で,これらは抽象的な概念でもあり,多くの初学者にとって理解が困難なものでもある。本講義では(可換)環の典型例である有理整数環・多項式環など理論に表れる典型的な具体例を通じて,これらの抽象概念に慣れていくことも目標の一つである。
到達目標
本講義を履修する事により、以下の知識と能力を習得する。
・ (可換) 環のイデアルおよび環上の加群の概念を正しく理解し、使う事ができる。
・局所化の概念を理解し、正しく使う事ができる。
・アルチン環やネーター環の概念を理解し、正しく使う事ができる。
キーワード
環,イデアル,剰余環,加群,テンソル積,局所化
学生が身につける力
- 専門力
- 教養力
- コミュニケーション力
- 展開力 (探究力又は設定力)
- 展開力 (実践力又は解決力)
授業の進め方
通常の講義形式による講義と、問題演習形式の講義を交互に行う。
授業計画・課題
授業計画 | 課題 | |
---|---|---|
第1回 | 環とイデアル | 講義中に指示する。 |
第2回 | 第 1 回の講義内容に関する問題演習 | 講義中に指示する。 |
第3回 | 環上の加群、部分加群、準同型 | 講義中に指示する。 |
第4回 | 第 3 回の講義内容に関する問題演習 | 講義中に指示する。 |
第5回 | 自由加群、完全列 | 講義中に指示する。 |
第6回 | 第 5 回の講義内容に関する問題演習 | 講義中に指示する。 |
第7回 | 単項イデアル整域上の加群 | 講義中に指示する。 |
第8回 | 第 7 回の講義内容に関する問題演習 | 講義中に指示する。 |
第9回 | 局所化 | 講義中に指示する。 |
第10回 | 第 9 回の講義内容に関する問題演習 | 講義中に指示する。 |
第11回 | ネーター環とアルティン環 | 講義中に指示する。 |
第12回 | 第 11 回の講義内容に関する問題演習 | 講義中に指示する。 |
第13回 | ヒルベルトの基底定理 | 講義中に指示する。 |
第14回 | 第 13 回の講義内容に関する問題演習 | 講義中に指示する。 |
準備学修(事前学修・復習)等についての指示
学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。
教科書
代数学(永尾汎著, 朝倉書店)、環と加群(山崎圭二郎著, 岩波書店)、代数学I + 代数学II(桂利行著, 東京大学出版会)、代数学2+代数学3(雪江明彦著, 日本評論社)などから選んでください.
参考書、講義資料等
講義中に指示する。
成績評価の方法及び基準
講義中に指示する。
関連する科目
- MTH.A201 : 代数学概論第一
- MTH.A202 : 代数学概論第二
- MTH.A203 : 代数学概論第三
- MTH.A204 : 代数学概論第四
- MTH.A302 : 代数学第二
履修の条件・注意事項
線形代数学第一・演習,線形代数学第二,線形代数学演習第二,線形空間論第一,線形空間論第二,代数学概論第一・第二,代数学概論第三・第四を履修済みであること,またはそれと同等の知識があること。
その他
特になし。