トップページへ

2021年度 H27年度以前入学者向け 理学部 数学科

代数学概論第一

開講元
数学科
担当教員
内藤 聡
授業形態
講義
メディア利用科目
-
曜日・時限
(講義室)
水3-4 (H111) / 金3-4 (H102)
クラス
-
科目コード
ZUA.A201
単位数
200
開講時期
2021年度
開講クォーター
1~2Q
シラバス更新日
2025年7月10日
使用言語
日本語

シラバス

授業の目的(ねらい)、概要

代数学は数学的対象のもつ演算規則を抽象化・一般化した理論である。本講義の主要なテーマは、演算規則に関する基本的な概念と性質、および整数や多項式の抽象化・一般化である可換な環とそのイデアル、剰余環等の概念と性質である。

本講義で学ぶ内容は代数学全体の基礎であるだけでなく、解析学や幾何学等、他の分野においても必須である。また、直感に頼らずに論証を行う事は、数学のみならず全ての数理系科学において基本的な態度である。本講義では、集合と写像の概念に基づいた厳密な論証を行い、数学における論理の進め方の典型例も学ぶ。

到達目標

特に重要な概念である、整数環、多項式環、二項演算、同値関係、同値類、整数環の剰余環、多項式環の剰余環、環の公理、部分環、イデアル、剰余環、環の準同型、環の準同型定理、等を理解し、習熟する事。また、これらについての基本的な性質を自力で証明できる様になる事。

キーワード

整数環、多項式環、二項演算、同値関係、同値類、整数環の剰余環、多項式環の剰余環、環、部分環、イデアル、剰余環、環の準同型、環の準同型定理

学生が身につける力

  • 専門力
  • 教養力
  • コミュニケーション力
  • 展開力 (探究力又は設定力)
  • 展開力 (実践力又は解決力)

授業の進め方

通常の講義形式による講義を行う。

授業計画・課題

授業計画 課題
第1回 自然数、整数環、有理数体、実数体、複素数体、多項式環 講義中に指示する。
第2回 整数環、多項式環における剰余定理、因数定理 講義中に指示する。
第3回 集合と写像の基本概念、順序対、デカルト積 講義中に指示する。
第4回 二項関係、二項演算 講義中に指示する。
第5回 同値関係、同値類 講義中に指示する。
第6回 集合の同値類による分割 講義中に指示する。
第7回 整数環の剰余環、多項式環の剰余環 講義中に指示する。
第8回 理解度確認 講義中に指示する。
第9回 環の公理、環の典型例、および公理から導かれる環の基本的性質 講義中に指示する。
第10回 環の零元、逆元の基本的性質 講義中に指示する。
第11回 部分環の定義、部分環の判定法、部分環の例 講義中に指示する。
第12回 環の準同型とその基本的性質 講義中に指示する。
第13回 環のイデアル 講義中に指示する。
第14回 剰余環、環の第一準同型定理 講義中に指示する。
第15回 環の第二準同型定理、第三準同型定理 講義中に指示する。

準備学修(事前学修・復習)等についての指示

学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。

教科書

中島匠一 : 代数と数論の基礎, 共立出版, 2000.

参考書、講義資料等

堀田良之:代数入門-環と加群-,裳華房, 1987.
高木貞治:代数学講義, 共立出版, 1965.
高木貞治:初等整数論講義, 共立出版, 1971.
アンドレ・ヴェイユ:初学者のための整数論(ちくま学芸文庫),筑摩書房,2010.

成績評価の方法及び基準

中間試験および期末試験. 詳細は講義中に指示する.

関連する科目

  • MTH.A201 : 代数学概論第一
  • MTH.A202 : 代数学概論第二
  • ZUA.A202 : 代数学演習A第一
  • ZUA.A203 : 代数学概論第二
  • ZUA.A204 : 代数学演習A第二

履修の条件・注意事項

「線形代数学第一・演習」「線形代数学第二」「線形代数学演習第二」を履修していることを前提とする。
「代数学演習A第一 (ZUA.A202)」を同時に履修することが強く推奨される(未履修の場合)。