2024年度 学院等開講科目 工学院 情報通信系
代数系と符号理論
- 開講元
- 情報通信系
- 担当教員
- 笠井 健太
- 授業形態
- 講義 (対面型)
- メディア利用科目
- -
- 曜日・時限
(講義室) - 月3-4 (M-B07(H101)) / 木3-4 (M-B07(H101))
- クラス
- -
- 科目コード
- ICT.C209
- 単位数
- 200
- 開講時期
- 2024年度
- 開講クォーター
- 3Q
- シラバス更新日
- 2025年3月17日
- 使用言語
- 日本語
シラバス
授業の目的(ねらい)、概要
符号理論の数学的基礎をなす群,環,体などの代数構造について述べた後,有限体上のべクトル空間の部分空間である線形符号,代数的符号とその代数的復号法について講義する.
到達目標
代数学の基礎をなす群,環,体とその性質について理解し,高い誤り訂正能力を有する符号空間を構成する方法に関する理論体系を学習する. 最も広く利用されている誤り訂正符号であるリード・ソロモン符号を中心に,符号の構成法と復号法に必要な代数学とその応用法を体系系的説明できるようになることが,本科目の到達目標である.
キーワード
誤り訂正符号、符号化と復号、代数、群、環、有限体、最小距離、線形符号、ハミング符号、RS符号、BCH符号
学生が身につける力
- 専門力
- 教養力
- コミュニケーション力
- 展開力 (探究力又は設定力)
- 展開力 (実践力又は解決力)
授業の進め方
この授業は対面で実施されます。
授業計画・課題
授業計画 | 課題 | |
---|---|---|
第1回 | 符号空間、通信路、ハミング距離、最小距離、符号化と復号、VG限界、ハミング限界、限界距離復号、最大事後確率復号、最尤復号 | 符号空間、通信路、ハミング距離、最小距離、符号化と復号、VG限界、ハミング限界、限界距離復号、最大事後確率復号、最尤復号を説明できるようになる。 |
第2回 | 線形符号、生成行列,パリティ検査行列、次元、シングルトン限界 | 生成行列,パリティ検査行列、次元、シングルトン限界を説明できるようになる。 |
第3回 | パリティ検査行列と最小距離,ハミング符号 | パリティ検査行列と最小距離,ハミング符号を説明できるようになる。 |
第4回 | コセット、シンドローム,シンドローム復号法 | コセット、シンドローム,シンドローム復号法を説明できるようになる。 |
第5回 | 符号の限界式,重み分布,MacWilliamsの恒等式 | 符号の限界式,重み分布,MacWilliamsの恒等式を説明できるようになる。 |
第6回 | 群,巡回群,部分群,剰余類、商群,群の同型 | 群,巡回群,部分群,剰余類、商群,群の同型を説明できるようになる。 |
第7回 | 環,準同型写像,イデアル,整数環,ユークリッドの互除法,素因数分解の一意性 | 環,準同型写像,イデアル,整数環,ユークリッドの互除法,素因数分解の一意性を説明できるようになる。 |
第8回 | 有限体,多項式環,位数,原始元 | 有限体,多項式環,位数,原始元を説明できるようになる。 |
第9回 | 有限体の構成法と算法,有限体の構造,最小多項式 | 有限体の構成法と算法,有限体の構造,最小多項式を説明できるようになる。 |
第10回 | RS符号の構成法 | RS符号の構成法を説明できるようになる。 |
第11回 | Vandermonde行列式,RS符号の生成行列とパリティ検査行列 | Vandermonde行列式,RS符号の生成行列とパリティ検査行列を説明できるようになる。 |
第12回 | RS符号の復号法 | RS符号の復号法を説明できるようになる。 |
第13回 | 巡回符号, 巡回符号の生成行列とパリティ検査行列 | 巡回符号, 巡回符号の生成行列とパリティ検査行列を説明できるようになる。 |
第14回 | BCH符号の構成法,BCH符号の最小距離,巡回RS符号,RS符号とBCH符号との関係 | BCH符号の構成法,BCH符号の最小距離,巡回RS符号を説明できるようになる。 |
準備学修(事前学修・復習)等についての指示
学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。
教科書
授業ごとに配布する。
参考書、講義資料等
坂庭好一、渋谷智治、代数系と符号理論入門、コロナ社、2010年
植松友彦、代数系と符号理論、オーム社、2010年
講義動画 https://bit.ly/2V9Ibm7
成績評価の方法及び基準
試験と演習によって決まります。
関連する科目
- ICT.C205 : 通信理論(情報通信)
- ICT.C201 : 情報通信概論
- ICT.E218 : 情報通信実験2
- ICT.C214 : 通信方式
履修の条件・注意事項
特になし