2024年度 学院等開講科目 工学院 機械系
応用数値計算法
- 開講元
- 機械系
- 担当教員
- 岡田 昌史
- 授業形態
- 講義/演習 (対面型)
- メディア利用科目
- -
- 曜日・時限
(講義室) - 月1-2 (I1-256(I121))
- クラス
- -
- 科目コード
- MEC.B332
- 単位数
- 0.50.50
- 開講時期
- 2024年度
- 開講クォーター
- 2Q
- シラバス更新日
- 2025年3月14日
- 使用言語
- 日本語
シラバス
授業の目的(ねらい)、概要
行列の固有値解析や常微分方程式の数値解法は機械工学のみならず,広汎な理工学分野において利用されている.解析技術の発展により,これらの技法は汎用シミュレーターを用いることで利用することも可能であるが,新たに正しい解析結果を得るため,あるいは取り扱う現象に関する理解を深めるには,動作原理を学ぶ必要がある.
本講義は「基礎数値計算法」で取得した知識およびプログラミング技術を応用・発展させ,上述の問題に潜む,数理について解説する.
到達目標
この授業により,以下の内容を修得する.
(a) 行列の固有値,固有ベクトルの理解
(b) 行列の逆行列,擬似逆行列
(c) 最小二乗法,最適化手法
(d) 常微分方程式の解法とその安定性
(e) これらを応用したプログラミングのスキル
キーワード
逆問題,固有値分解,特異値分解,最小二乗法,常微分方程式
学生が身につける力
- 専門力
- 教養力
- コミュニケーション力
- 展開力 (探究力又は設定力)
- 展開力 (実践力又は解決力)
- 6. 機械工学の発展的専門学力,7. 専門知識を活用して新たな課題解決と創造的提案を行う能力
授業の進め方
講義を中心とした授業を行い,また,講義内容の演習も行う.
授業計画・課題
授業計画 | 課題 | |
---|---|---|
第1回 | ベクトルと空間,行列と写像 | n次元空間の概念をつかむ.写像を行列で表す |
第2回 | 行列の正負と零空間 | 行列の正負,零空間を理解する |
第3回 | ベクトル・行列の大きさ(固有値,行列のべき乗) | ベクトルのノルム,固有値分解を理解する |
第4回 | 逆問題の解法(逆行列,特異値分解) | 逆行列,擬似逆行列,特異値分解を理解する |
第5回 | 最適化と最小二乗法 | 最適化手法と最小二乗法を理解する |
第6回 | 常微分方程式の数値解法 | 常微分方程式の数値解法を身につける |
第7回 | 陽解法と陰解法 | 陽解法と陰解法を理解する |
準備学修(事前学修・復習)等についての指示
学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。
教科書
特になし(講義中に適宜資料を配付する)
参考書、講義資料等
特になし
成績評価の方法及び基準
期末試験によって評価する.ただし,状況によって変更する場合がある.
関連する科目
- MEC.B232 : 基礎数値計算法
履修の条件・注意事項
基礎数値計算法の知識を必要とする.
2024年度は,2023年4月1日以降に入学した学生(23B~)は履修できません.