2024年度 学院等開講科目 理学院 数学系
幾何学第二
- 開講元
- 数学系
- 担当教員
- KALMAN TAMAS
- 授業形態
- 講義/演習 (対面型)
- メディア利用科目
- -
- 曜日・時限
(講義室) - 金3-6 (M-107(H113))
- クラス
- -
- 科目コード
- MTH.B302
- 単位数
- 110
- 開講時期
- 2024年度
- 開講クォーター
- 2Q
- シラバス更新日
- 2025年3月14日
- 使用言語
- 日本語
シラバス
授業の目的(ねらい)、概要
本講義の目的は、「幾何学第一」と同じで、微分可能多様体の基本的な概念と性質について学んでもらうことである。
講義では、写像の微分、正則値、臨界点、逆関数定理、Sardの定理、はめ込みと埋め込み、部分多様体、1の分割、ベクトル場について解説する。各回で講義内容に関する問題演習を行う。本講義は、1Qに開講される「幾何学第一」に続き、引き続き行われる「幾何学続論」に続くものである。
到達目標
・写像の微分の定義を理解すること。
・部分多様体の例を3つ以上挙げることができるようになること。
・1の分割の使い方に慣れること。
・ベクトル場の括弧積と積分曲線について理解すること。
キーワード
写像の微分、正則値、臨界点、逆関数定理、サードの定理、はめ込みと埋め込み、ホイットニーの埋め込み定理、1の分割、ベクトル場、括弧積、積分曲線、
1助変数変換群
学生が身につける力
- 専門力
- 教養力
- コミュニケーション力
- 展開力 (探究力又は設定力)
- 展開力 (実践力又は解決力)
授業の進め方
通常の講義形式による講義と問題演習形式の講義を交互に行う。
授業計画・課題
授業計画 | 課題 | |
---|---|---|
第1回 | 写像の微分、正則点、臨界点 | 講義中に指示する。 |
第2回 | 第1回の講義内容に関する問題演習 | 講義中に指示する。 |
第3回 | 逆関数定理、正則値の逆像、サードの定理 | 講義中に指示する。 |
第4回 | 第3回の講義内容に関する問題演習 | 講義中に指示する。 |
第5回 | はめ込み、埋め込み | 講義中に指示する。 |
第6回 | 第5回の講義内容に関する問題演習 | 講義中に指示する。 |
第7回 | 部分多様体と埋め込みとの関係 | 講義中に指示する。 |
第8回 | 第7回の講義内容に関する問題演習 | 講義中に指示する。 |
第9回 | ホイットニーの埋め込み定理、1の分割 | 講義中に指示する。 |
第10回 | 第9回の講義内容に関する問題演習 | 講義中に指示する。 |
第11回 | ベクトル場、括弧積, 積分曲線 | 講義中に指示する。 |
第12回 | 第11回の講義内容に関する問題演習 | 講義中に指示する。 |
第13回 | 1助変数変換群 | 講義中に指示する。 |
第14回 | 第13回の講義内容に関する問題演習 | 講義中に指示する。 |
準備学修(事前学修・復習)等についての指示
学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。
教科書
使用しない
参考書、講義資料等
「多様体の基礎」松本幸夫著 東京大学出版会 (1988年)
「多様体入門」松島与三著 裳華房 (1965年)
「多様体」服部晶夫著 (1989年)
成績評価の方法及び基準
期末試験の点数、および演習における問題の解答状況により評価する。詳細は講義中に指示する。
関連する科目
- MTH.B301 : 幾何学第一
- MTH.B331 : 幾何学続論
履修の条件・注意事項
幾何学第一を履修済みであることが望ましい。