トップページへ

2024 Faculty Courses School of Science Undergraduate major in Mathematics

Geometry II

Academic unit or major
Undergraduate major in Mathematics
Instructor(s)
Tamas Kalman
Class Format
Lecture/Exercise (Face-to-face)
Media-enhanced courses
-
Day of week/Period
(Classrooms)
3-6 Fri
Class
-
Course Code
MTH.B302
Number of credits
110
Course offered
2024
Offered quarter
2Q
Syllabus updated
Mar 14, 2025
Language
Japanese

Syllabus

Course overview and goals

The aim of this course is the same as the one of [MTH. B301 : Geometry I]: it is to familiarize the students with basic notions and properties on differentiable manifolds.
The contents of this course is as follows: differentials of maps, regular values, critical points, inverse function theorem, Sard's theorem, immersions and embeddings, submanifold, partition of unity, vector fileds. Each lecture will be accompanied by a problem solving class. This course is a continuation of [Geometry I] in the first quarter and will be succeeded by [MTH. B331 : Geometry Ⅲ] in the third quater.

Course description and aims

Students are expected to
・understand the definition of defferentials of maps between manifolds.
・know more than 3 examples of submanifolds.
・be able to use ``Partition of unity''.
・understand the definitions of brackets of vector fields and integral curves of vector fields.

Keywords

Differential of a map, regular value, critical point, inverse function theorem, Sard's theorem, immersion and embedding, Whitney's embedding theorem, partition of unity, vector field, bracket, integral curve, 1-parameter group of transformations

Competencies

  • Specialist skills
  • Intercultural skills
  • Communication skills
  • Critical thinking skills
  • Practical and/or problem-solving skills

Class flow

Standard lecture course accompanied by discussion sessions

Course schedule/Objectives

Course schedule Objectives
Class 1 The differential of a map, regular points, critical points Details will be provided during each class session.
Class 2 Dicussion session Details will be provided during each class session.
Class 3 Inverse function theorem, the inverse image of a regular value, Sard's theorem Details will be provided during each class session.
Class 4 Discussion session Details will be provided during each class session.
Class 5 Immersion, embedding Details will be provided during each class session.
Class 6 Discussion session Details will be provided during each class session.
Class 7 Relationship between submanifolds and embeddings Details will be provided during each class session.
Class 8 Discussion session Details will be provided during each class session.
Class 9 Whitney's embedding theorem, partition of unity Details will be provided during each class session.
Class 10 Discussion session Details will be provided during each class session.
Class 11 Vector field, bracket, integral curves of vector fields Details will be provided during each class session.
Class 12 Discussion session Details will be provided during each class session.
Class 13 1-parameter groups of transformations Details will be provided during each class session.
Class 14 Discussion session Details will be provided during each class session.

Study advice (preparation and review)

To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.

Textbook(s)

None required

Reference books, course materials, etc.

Yozo Matsushima, Differentiable Manifolds (Translated by E.T. Kobayashi), Marcel Dekker, Inc., 1972
Frank W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer-Verlag, 1983

Evaluation methods and criteria

Final exam and discussion session. Details will be provided during class sessions.

Related courses

  • MTH.B301 : Geometry I
  • MTH.B331 : Geometry III

Prerequisites

Students are expected to have passed [Geometry I].