トップページへ

2022 Faculty Courses School of Engineering Undergraduate major in Mechanical Engineering

Complex Function Theory

Academic unit or major
Undergraduate major in Mechanical Engineering
Instructor(s)
Tetsuya Suekane / Takatoki Yamamoto
Class Format
Lecture (Livestream)
Media-enhanced courses
-
Day of week/Period
(Classrooms)
3-4 Fri (H121)
Class
-
Course Code
MEC.B212
Number of credits
100
Course offered
2022
Offered quarter
1Q
Syllabus updated
Jul 10, 2025
Language
Japanese

Syllabus

Course overview and goals

 A complex number is a combination of real and imaginary numbers and is an indispensable mathematical tool to understand the various phenomena in mechanical engineering. In this lecture, you study the fundamentals and application of the complex function theory, which is required by a mechanical engineer. In addition to understanding the basics of the differentiation of complex functions, you acquire mathematical skills to solve various engineering problems by studying the second-order partial differential equations and the application to the integral calculation of real functions.

The lecture is focused on the following points.
1. By learning the calculus of the complex function in comparison with that of the real function, you understand the characteristics of the complex function and acquire the calculating ability.

2. You learn that many of the important techniques in the integral evaluation of complex functions are developed from Cauchy's integral theorem and Cauchy's integral formula by learning the Cauchy-Riemann equation, Laplace equation, Cauchy's integral theorem.

3. Learn about the advanced integral methods using Taylor and Laurent series expansion and the use of residue theory.

Course description and aims

By the end of this course, students will be able to:
1) Have an understanding of an overview of a complex number and complex function, and gain an ability to solve the basic problem.
2) Understand the advantage of complex functions, and gain an ability to solve real problems in various engineering.

Keywords

Complex derivative, linear second-order partial differential equation, Laplace equation, complex integration, residues.

Competencies

  • Specialist skills
  • Intercultural skills
  • Communication skills
  • Critical thinking skills
  • Practical and/or problem-solving skills

Class flow

After devoting the classes to fundamentals, the course advances to applications. To allow students to get a good understanding of the course contents and practice application, problems related to the contents of this course are provided.

Course schedule/Objectives

Course schedule Objectives
Class 1 Differentiation and integral in the complex plane, Cauchy-Riemann equation Derivation of Cauchy-Riemann equation
Class 2 Basics of the second-order partial differential equation, Laplace equation Relation to an elliptic second-order partial differential equation
Class 3 Integral in the complex plane, Integral theorem of Cauchy, Set-up of the integration path in the integration of complex functions
Class 4 The integral theorem of Cauchy Integration method using Cauchy's integral formula
Class 5 Taylor and Laurent series expansion Derivation of series expansion
Class 6 Residue theorem, evaluation of the integrals using the residue theorem Examples of integrals using the residue theorem
Class 7 Application to Real function integration Examples of the integral of a real function

Study advice (preparation and review)

To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterward (including assignments) for each class.
They should do so by referring to textbooks and other course material.

Textbook(s)

See Japanese site.

Reference books, course materials, etc.

To be announced

Evaluation methods and criteria

Learning achievement is evaluated by the assignment and exercise.

Related courses

  • MEC.B213 : Partial Differential Equations

Prerequisites

It is desirable to have knowledge in the partial differential equation.

Contact information (e-mail and phone) Notice : Please replace from ”[at]” to ”@”(half-width character).

T. Yamamoto、yamamoto.t.ba[at]m.titech.ac.jp, ex) 3182 
T. Suekane: suekane.t.aa[at]m.titech.ac.jp, ex) 5494

Other

In fiscal 2022, we give lectures on ZOOM.