トップページへ

2022 Faculty Courses School of Science Undergraduate major in Physics

Computational Physics

Academic unit or major
Undergraduate major in Physics
Instructor(s)
Kazuyuki Sekizawa
Class Format
Lecture/Exercise (Face-to-face)
Media-enhanced courses
-
Day of week/Period
(Classrooms)
7-8 Tue (南4号館, 情報ネットワーク演習室, 第2演習室) / 7-8 Fri (南4号館, 情報ネットワーク演習室, 第2演習室)
Class
-
Course Code
PHY.L210
Number of credits
110
Course offered
2022
Offered quarter
4Q
Syllabus updated
Jul 10, 2025
Language
Japanese

Syllabus

Course overview and goals

This lecture provides basic knowledge and techniques to understand physical phenomena by numerically solving equations.
Modern recommended programming methods are explained.
Through practical programming experiences, basic techniques of numerically solving differential equations and data analysis are provided, which play one of the major roles in modern physics research.

Course description and aims

This course will provide opportunities to learn various computational techniques, which are equally important as experiments and theories.
Students will acquire knowledge and experience that can be applied to solve problems through practical training of programming.

Keywords

Programming languages, numerical integrations, numerical solutions of differential equations, data analysis, numerical simulations

Competencies

  • Specialist skills
  • Intercultural skills
  • Communication skills
  • Critical thinking skills
  • Practical and/or problem-solving skills

Class flow

1/3 of each class will be a lecture on basic concepts and required knowledge including explanations on important points. 2/3 of each class will be adopted to practical programming.

Course schedule/Objectives

Course schedule Objectives
Class 1

Preparing computation environment

Prepare computation environment on your PC or on TSUBAME.

Class 2

Introduction to Unix and Fortran language

Understand basics of Unix.
Write a simple Fortran program and check basic functions.

Class 3

Introduction to the Finite Difference Method: 1D Diffusion Equation

Understand how to solve a differential equation with the finite difference method.

Class 4

Finite Difference Methods and Numerical Accuracy I: 1D Advection Equation

Understand numerical accuracy and stability of various finite-difference schemes.

Class 5

Finite Difference Methods and Numerical Accuracy II: 1D Advection Equation

Analyze accuracy and stability of various finite-difference schemes by numerically solving a 1D advection equation.

Class 6

Introduction to Computational Fluid Dynamics I: 2D Vorticity Equation and Kármán vortex street

Learn basics of computational fluid dynamics (CFD). Understand the vorticity equation.

Class 7

Introduction to Computational Fluid Dynamics II: 2D Vorticity Equation and Kármán vortex street

Generate Kármán vortex street by numerically solving a 2D vorticity equation.

Class 8

Computational Techniques for a Time-Independent Schrödinger Equation I: Numerov's Method

Understand the Schrödinger equation for electronic wave functions in a hydrogen atom and Numerov's method.

Class 9

Computational Techniques for a Time-Independent Schrödinger Equation II: Numerov's Method

Analyze electronic wave functions in a hydrogen atom by numerically solving a radial Schrödinger equation using Numerov's method.

Class 10

Computational Techniques for a Time-Independent Schrödinger Equation III: Matrix Diagonalization

Understand the matrix representation of a Schrödinger equation.

Class 11

Computational Techniques for a Time-Independent Schrödinger Equation IV: Matrix Diagonalization

Analyze eigenvalues and eigenvectors of a 1D Schrödinger equation by numerically diagonalizing a Hamiltonian matrix using LAPACK.

Class 12

Computational Techniques for a Time-Dependent Schrödinger Equation I: Taylor Expansion Method

Understand the Taylor expansion method for a time-dependent Schrödinger equation.

Class 13

Computational Techniques for a Time-Dependent Schrödinger Equation II: Taylor Expansion Method

Analyze time evolution of a wave packet scattered by a potential by numerically solving a 1D time-dependent Schrödinger equation using the Taylor expansion method.

Class 14

Introduction to Quantum Hydrodynamics I: Time-Dependent Gross-Pitaevskii Equation

Understand basic properties of superfluid and the principle of quantized vortices.

Class 15

Introduction to Quantum Hydrodynamics II: Time-Dependent Gross-Pitaevskii Equation

Generate Kármán vortex street by numerically solving 2D time-dependent Gross-Pitaevskii equation.

Study advice (preparation and review)

To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class. They should do so by referring to textbooks and other course materials.

Textbook(s)

Lecture notes distributed by the instructor.

Reference books, course materials, etc.

Not specified.

Evaluation methods and criteria

By monthly report.

Related courses

  • PHY.Q207 : Introduction to Quantum Mechanics
  • LAS.M106 : Linear Algebra II

Prerequisites

No prerequisites.

Contact information (e-mail and phone) Notice : Please replace from ”[at]” to ”@”(half-width character).

Kazuyuki Sekizawa

sekizawa at phys.titech.ac.jp

2463

Office hours

Contact by e-mail in advance.