トップページへ

2021年度 学院等開講科目 情報理工学院 情報工学系 知能情報コース

知能情報特別講義S

開講元
知能情報コース
担当教員
鈴村 豊太郎 / 町田 元也
授業形態
講義
メディア利用科目
-
曜日・時限
(講義室)
集中講義等
クラス
-
科目コード
ART.T454
単位数
200
開講時期
2021年度
開講クォーター
1~2Q
シラバス更新日
2025年7月10日
使用言語
英語

シラバス

授業の目的(ねらい)、概要

本科目は、数理情報、知能情報、生命情報、社会情報などの幅広い情報学の最先端のトピックに外部講師によって、短期間に集中講義を行う。
本科目の狙いは、社会で活躍する一線の研究者による幅広い分野の研究の話題を講義することによって、学生の視野を広げることにある。

到達目標

数理情報、知能情報、生命情報、社会情報に関する最先端のトピックに関する知識を修得できる。

キーワード

数理情報学、知能情報学、生命情報学、社会情報学

学生が身につける力

  • 専門力
  • 教養力
  • コミュニケーション力
  • 展開力 (探究力又は設定力)
  • 展開力 (実践力又は解決力)

授業の進め方

担当講師が選んだトピックについての講義を行う.

授業計画・課題

授業計画 課題
第1回 グラフアルゴリズム グラフ理論
第2回 グラフデータベース グラフ理論
第3回 グラフ解析と機械学習 機械学習
第4回 グラフ構造データに対する深層学習 ニューラルネットワーク
第5回 グラフ構造データに対する深層学習 ニューラルネットワーク
第6回 高性能計算と大規模グラフ学習 高性能計算
第7回 大規模グラフ学習とユースケース グラフ理論
第8回 Motivation for Monte Carlo simulation / Rejection algorithm Study of advanced topics
第9回 Markov chain Monte Carlo method / Metropolis algorithm Study of advanced topics
第10回 Discrete structure and Gibbs sampler / Gibbs algorithm Study of advanced topics
第11回 How long should you run it? / Perfect sampling algorithms Study of advanced topics
第12回 Hidden Markov model and dynamic decision making / Viterbi algorithm Study of advanced topics
第13回 Quantum computation and sampling / Shor’s algorithm Study of advanced topics
第14回 Brownian motion and intertwining dual / Pitman-type algorithm Study of advanced topics

準備学修(事前学修・復習)等についての指示

教科書

なし

参考書、講義資料等

講師が指定する

成績評価の方法及び基準

講義中の演習と終了後のレポートによる

関連する科目

  • なし

履修の条件・注意事項

なし

連絡先 (メール、電話番号) ※”[at]”を”@”(半角)に変換してください。

室伏俊明(murofusi[at]c.titech.ac.jp)

その他

詳細については決まり次第掲示する.