トップページへ

2020 Students Enrolled in or before 2015 School of Science Mathematics

Special courses on advanced topics in Mathematics C

Academic unit or major
Mathematics
Instructor(s)
Hiraku Nakajima
Class Format
Lecture (Zoom)
Media-enhanced courses
-
Day of week/Period
(Classrooms)
Intensive
Class
-
Course Code
ZUA.E333
Number of credits
200
Course offered
2020
Offered quarter
2Q
Syllabus updated
Jul 10, 2025
Language
English

Syllabus

Course overview and goals

We give a mathematically rigorous definition of Coulomb branches, which arise supersymmetric gauge theories. They are realized as examples of convolution algebras defined over equivariant homology groups. Spaces for which we take equivariant homology groups are variants of the so-called affine Grassmannian manifolds. They are moduli spaces of principal bundles and sections of associated vector bundles on the 2-dimensional disk. We also explain that this construction can be natually arise in the framework of topological quantum field theories.

In geometric representation theory, we often use the techique constructing algebras and their representations as convolution algebras on equivariant homology groups. One of aims of these lectures is to learn this techique by an example. This technique is often applied to usual manifolds, such as flag manifolds and their cotangent bundles, or quiver varieties. But we graduately learn that it is also applied to infinite dimensional manifolds, such as affine Grassmanian manifolds. It is also natural to treat infinite dimensional manifolds in order to connect them to quantum field theories in theoretical physics. The second aim is to know moduli spaces as examples of infinite dimensional manifolds.

Course description and aims

・Learn the definition and basic properties of equivariant homology groups
・Understand the definition and properties of convolution algebras
・Learn the mathematical definition of Coulomb branches of supersymmetric gauge theories
・Understand basics on topological quantum field theories and vaccum.

Keywords

equivariant homology groups, convolution algebras, affine Grassmannian manifolds, Coulomb branches of gauge theories

Competencies

  • Specialist skills
  • Intercultural skills
  • Communication skills
  • Critical thinking skills
  • Practical and/or problem-solving skills

Class flow

This is a standard lecture course. There will be some assignments.

Course schedule/Objectives

Course schedule Objectives
Class 1 The following topics will be covered in this order : -- definition and basic properties of equivariant homology groups -- definition and basic properties of convolution algebras -- definitions and basic properties of affine Grassmannian manifolds and varities of triples -- definition of Coulomb branches -- basic properties and examples of Coulomb branches -- summary on topological quantum field theories -- moduli spaces and vacuum Details will be provided during each class session.

Study advice (preparation and review)

Textbook(s)

None required

Reference books, course materials, etc.

Introduction to a provisional mathematical definition of Coulomb branches of 3-dimensional N=4 gauge theories, arXiv:1706.05154.

Evaluation methods and criteria

Assignments (100%).

Related courses

  • MTH.B341 : Topology
  • MTH.B301 : Geometry I
  • MTH.B302 : Geometry II
  • MTH.B331 : Geometry III
  • ZUA.A331 : Advanced courses in Algebra A

Prerequisites

fundamentals of homology and algebra