トップページへ

2024 Faculty Courses Liberal arts and basic science courses Basic science and technology courses

Linear Algebra Recitation II S(61~70)

Academic unit or major
Basic science and technology courses
Instructor(s)
Hidekazu Tanaka
Class Format
Exercise (Face-to-face)
Media-enhanced courses
-
Day of week/Period
(Classrooms)
3-4 Wed
Class
S(61~70)
Course Code
LAS.M108
Number of credits
010
Course offered
2024
Offered quarter
4Q
Syllabus updated
Mar 14, 2025
Language
Japanese

Syllabus

Course overview and goals

Based on "Linear Algebra I", this course discusses basic part of vector space and linear mapping, eigenvalue and diagonalization, and inner product of vector space.

The aim of this recitation is to cultivate a better understanding of the theory of vector spaces which will be important for
science and engineering.

Course description and aims

Following "Linear algebra I", this course is concerned with the foundation of linear algebra. This course aims for a deeper understanding and development of the theory of Linear Algebra.

Keywords

Vector space, basis, linear transformation, eigenvalue, diagonalization

Competencies

  • Specialist skills
  • Intercultural skills
  • Communication skills
  • Critical thinking skills
  • Practical and/or problem-solving skills

Class flow

A recitation class is held every week in accordance with the progress of the lectures. Details will be announced in class.

Course schedule/Objectives

Course schedule Objectives
Class 1 Vector space, subspace Help better understand the notions of vector space.
Class 2 Linear combination, linear independence, linear dependence Help better understand the notion of linear independence.
Class 3 Basis, dimension, existence of basis Help better understand the notion of basis.
Class 4 Linear transformation, kernel and image, representation matrix of linear transformation Help better understand linear transformation and related notions.
Class 5 Orthonormal basis, inner product and norm, Schwarz's inequality, orthogonalization method of Schmitt Help better understand orthonormal basis and related notion.
Class 6 Eigenvalue, eigenvector, characteristic polynomial, multiplicity, eigenspace, triangularization and diagonalization of matrices Help better understand eigenvalue problems.
Class 7 Diagonalization of normal matrices, diagonalization of real symmetric matrix Help better understand diagonalization and related notions.

Study advice (preparation and review)

To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.

Textbook(s)

See the syllabus of "Linear Algebra II S".

Reference books, course materials, etc.

See the syllabus of "Linear Algebra II S".

Evaluation methods and criteria

Based on overall evaluation on the results of quizzes, reports, mid-term and final examinations.

Related courses

  • LAS.M102 : Linear Algebra I / Recitation
  • LAS.M106 : Linear Algebra II

Prerequisites

Students are supposed to have completed Linear Algebra I / Recitation (LAS.M102).
Students are recommended to take Linear Algebra II (LAS.M106) at the same time.

Other

None in particular.