トップページへ

2024年度 学院等開講科目 環境・社会理工学院 土木・環境工学系

構造力学第二

開講元
土木・環境工学系
担当教員
丸山 泰蔵
授業形態
講義 (対面型)
メディア利用科目
-
曜日・時限
(講義室)
火3-4 (W5-104)
クラス
-
科目コード
CVE.A301
単位数
100
開講時期
2024年度
開講クォーター
2Q
シラバス更新日
2025年3月14日
使用言語
日本語

シラバス

授業の目的(ねらい)、概要

このコースの内容は大きく3つに分かれる。まず,静定構造物の重ね合わせ,および,エネルギー原理による不静定構造物の解析を説明する.次に,単純塑性解析と呼ばれる簡易手法による極限解析の理論と応用について説明する.崩壊に至る詳細な過程は省略し,上界定理と下界定理を用いて崩壊時における構造物の塑性限界荷重を求める.最後に,トラスの要素剛性関数と直接剛性法を中心として授業を行う.マトリックス構造解析の基礎を通して学生はトラスの問題を解決することができる.

構造力学第一(CVE.A202)に引き続く本講義では,まず不静定構造物の解析を扱う.不静定構造物の部材力は,力のつりあいに加えて変形の適合条件を考慮しなければならないことを説明する.次に,単純塑性解析と呼ばれる極限解析では,崩壊に至る詳細な過程は省略し,上界定理と下界定理を用いて崩壊時における構造物の塑性限界荷重が容易に求められることを示す.最後に,トラスの問題を例に直接剛性法を説明するが,これは後の「マトリックス構造解析」の基礎をなすものである.

到達目標

本講義を履修することによって次の能力を修得する.
1. 様々な構造部材(梁,トラス,骨組及びアーチ)からなる不静定構造物の部材力及び変位を求めること.
2. 構造物の崩壊時における限界荷重を求めること.
3. 全体剛性方程式を用いてトラスの問題を解く.
4. 直接剛性法を用いてトラスの問題を解く.

キーワード

不静定構造物,力のつりあい,適合条件,エネルギー原理,極限解析,上下界定理,塑性限界荷重,直接剛性法、全体剛性方程式、トラス、剛性方程式

学生が身につける力

  • 専門力
  • 教養力
  • コミュニケーション力
  • 展開力 (探究力又は設定力)
  • 展開力 (実践力又は解決力)

授業の進め方

各授業は基礎を中心にしてそのほかには応用内容を行われる.課題をこなすことで,授業内容の理解,実用化,問題を深める.課題の解答は,授業中に行われる.

授業計画・課題

授業計画 課題
第1回 重ね合わせによる不静定構造物の解析 重ね合わせによる不静定構造物の解析方法を説明でき,関連する問題を解くことができる.
第2回 不静定構造物の解析 不静定構造物の問題を解くことができる.
第3回 極限解析の理論 極限解析の理論を説明することができる.
第4回 極限解析の応用 構造物の崩壊時における限界荷重を求めることができる.
第5回 トラスの要素剛性関数 授業ノートの項目2.4-2.6を復習する.
第6回 大域解析方程式-直接剛性法 1 授業ノートの項目3.1-3.2を復習する.
第7回 大域解析方程式-直接剛性法 2 授業ノートの項目3.1-3.2を復習する.

準備学修(事前学修・復習)等についての指示

学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。

教科書

特に指定なし.

参考書、講義資料等

必要な講義資料は担当教員から適宜提供される.

成績評価の方法及び基準

最終試験70%,課題30%

関連する科目

  • CVE.A201 : 材料と部材の力学
  • CVE.A202 : 構造力学第一

履修の条件・注意事項

構造力学第一(CVE.A202)を履修しておくこと,あるいは,同等の知識を有していること.