2024 Faculty Courses School of Life Science and Technology Undergraduate major in Life Science and Technology
Biophysical Chemistry
- Academic unit or major
- Undergraduate major in Life Science and Technology
- Instructor(s)
- Hideki Taguchi / Noriyuki Asakura
- Class Format
- Lecture (Face-to-face)
- Media-enhanced courses
- -
- Day of week/Period
(Classrooms) - 5-6 Mon / 5-6 Thu
- Class
- -
- Course Code
- LST.A341
- Number of credits
- 200
- Course offered
- 2024
- Offered quarter
- 2Q
- Syllabus updated
- Mar 14, 2025
- Language
- Japanese
Syllabus
Course overview and goals
This course deals with a more advanced treatment of the biochemical mechanisms based on physical chemistry and introduces physical chemistry in a variety of biological processes. Topics include physical chemistry of biomolecules, thermodynamics and quantum chemistry for metabolism and photosynthesis. Physical chemistry approaches to biology will provide us the wide range of backgrounds among biotechnology and the bases on applications of biological systems.
Course description and aims
By the end of this course, students will be able to:
1) Understand the role of physical chemistry in biological system.
2) Understand basic statistical thermodynamics in biological system.
3) Understand protein folding, protein stability, protein-protein interaction and motor proteins.
4) Explain energy production through biological processes.
5) Explain an electron transfer reaction in proteins
6) Explain the photochemical processes of photosynthesis.
Keywords
thermodynamics, statistical thermodynamics, proteins, protein stability, protein folding, protein-protein interaction, photochemistry, metabolism, photosynthesis
Competencies
- Specialist skills
- Intercultural skills
- Communication skills
- Critical thinking skills
- Practical and/or problem-solving skills
Class flow
This course mainly consists of lectures. Required learning should be completed outside of the classroom for preparation and review purposes.
Course schedule/Objectives
Course schedule | Objectives | |
---|---|---|
Class 1 | Introduction: Biological science in the context of physical chemistry | Explain the significance of physical chemistry in biological science. |
Class 2 | Basic statistical thermodynamics 1- Boltzmann distribution and partition function | Explain Boltzmann distribution and partition function. |
Class 3 | Basic statistical thermodynamics 2- equilibrium constants using statistical thermodynamics | Explain equilibrium constants using statistical thermodynamics. |
Class 4 | Protein folding | Explain protein folding and its correlation to protein function. |
Class 5 | Protein stability | Explain how the stability of proteins is described by physical chemistry. |
Class 6 | Protein-protein interaction | Explain the mode of protein-protein interaction and its physiological importance. |
Class 7 | Summary of the first half | explain the significance of the concept of physical chemistry in life science, the basics of statistical thermodynamics, and specific examples. |
Class 8 | Thermodynamics and equilibrium on metabolism | Explain metabolism based on thermodynamic equilibrium. |
Class 9 | Theory of electron transfer reaction | Explain Franck-Condon principle and Marcus theory. |
Class 10 | Kinetics of biological electron transfer reaction | Explain an electron transfer rate and reorganization energy. |
Class 11 | Activation energy of biological electron transfer reaction | Explain the activation energy of electron transfer and reorganization energy. |
Class 12 | Photochemistry of proteins | Explain photochemical reaction based on quantum mechanics. |
Class 13 | Photocehemical reaction in photosynthesis I | Understand photosynthesis based on electron transfer throry and quantum mechanics |
Class 14 | Photocehemical reaction in photosynthesis II | Understand photoinduced electron transfer and photoinduced energy transfer in photosynthesis processes |
Study advice (preparation and review)
To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.
Textbook(s)
Distribute handouts or upload materials via T2SCHOLA
Reference books, course materials, etc.
Physical Chemistry for the Life Sciences (Atkins and De Paula)
Evaluation methods and criteria
Midterm exam and final exam including questions of fundermental knowledge on physical chemistry, discription type questions, and calculation problems.
Related courses
- LST.A201 : Physical Chemistry I
- LST.A206 : Physical Chemistry II
- LST.A211 : Physical Chemistry III
- LST.A331 : Structural Biology
- LST.A341 : Biophysical Chemistry
- LST.A409 : Physical Biology of the Cell
Prerequisites
Students must have successfully completed Physical Chemistry I, Physical Chemistry II, and Physical Chemistry III or have equivalent knowledge.
Contact information (e-mail and phone) Notice : Please replace from ”[at]” to ”@”(half-width character).
Hideki Taguchi: taguchi[at]bio.titech.ac.jp , Noriyuki Asakura : asakura.n.aa[at]m.titech.ac.jp
Office hours
Contact by e-mail in advance to schedule an appointment is desirable.