トップページへ

2024年度 学院等開講科目 情報理工学院 情報工学系 知能情報コース

モデリングの数理

開講元
知能情報コース
担当教員
高安 美佐子 / 高安 秀樹
授業形態
講義 (ハイフレックス型)
メディア利用科目
-
曜日・時限
(講義室)
火7-8 (G1-103 (G114)) / 金7-8 (G1-103 (G114))
クラス
-
科目コード
ART.T468
単位数
200
開講時期
2024年度
開講クォーター
2Q
シラバス更新日
2025年3月14日
使用言語
英語

シラバス

授業の目的(ねらい)、概要

不確実性を伴う、複雑度が高いなどの理由から第一原理からの記述が難しい現象を理解するためには、それらを数理的な問題として定式化する「モデリング」の作業が特に重要になる。本講義では、確率的な要素や非線形性を含む代表的な現象を例示しながら、モデリングに必要となる基本的な数理について学ぶ。

到達目標

確率的な要素や非線形動力学を含む現象に関する基本的な数理モデルを学ぶことを通じて、より複雑な現象に対し発展的なモデリングを行うための基礎を身に付ける。

キーワード

確率変数、確率分布、相関、拡散現象、ブラウン運動、分枝過程、相転移現象、輸送現象、複雑ネットワーク

学生が身につける力

  • 専門力
  • 教養力
  • コミュニケーション力
  • 展開力 (探究力又は設定力)
  • 展開力 (実践力又は解決力)
  • 未知な現象を数理モデル化するための基礎を学ぶ

授業の進め方

対面で講義を行う。各講義内容については、具体的な現象を提示し、数学的な説明を行う。

授業計画・課題

授業計画 課題
第1回 モデリングとは 観測・モデル構築・解析・モデルの評価について学ぶ。
第2回 現象の観測と基本モデル1 指数分布や正規分布などの基本的な分布と、その背後にある数理モデルを学習する。
第3回 現象の観測と基本モデル2 ベキ分布と、その背後にある数理モデルを学習する。
第4回 現象の観測と基本モデル3 非線形動力学と、基本的な数理モデルを学習する。
第5回 拡散現象のモデリング1 マクロな不可逆現象である拡散を考え、拡散方程式について学習する。
第6回 拡散現象のモデリング2 ミクロの視点から拡散現象をとらえ直し、ランダムウォークから拡散現象の特性を導出する。
第7回 拡散現象のモデリング 応用1 拡散現象の応用として、金融市場の価格変動の時系列モデルを学習する。
第8回 拡散現象のモデリング 応用2 拡散現象の応用として、ミクロな視点からの金融市場のモデルを学習する。
第9回 分枝・凝集現象のモデリング 1 様々なシステムで観測される分岐過程のモデリングについて学習する。
第10回 分枝・凝集現象のモデリング 2 様々なシステムで観測される凝集現象のモデリングについて学習する。
第11回 相転移現象のモデリング 1 相転移現象の基本モデルの特性とその理論解法について学ぶ。
第12回 相転移現象のモデリング2 輸送現象における渋滞のモデルと相転移について学習する。
第13回 相転移現象のモデリング3 自己組織臨界現象とそのモデルについて学ぶ。
第14回 複雑ネットワーク現象のモデリング 複雑ネットワーク構造の特徴づけとそのモデルについて学習する。

準備学修(事前学修・復習)等についての指示

学修効果を上げるため,参考書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する 予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。

教科書

特になし

参考書、講義資料等

その他の参考書などは講義中に知らせる。また講義資料はダウンロードできるように用意する。

成績評価の方法及び基準

講義内容の理解度をレポート課題にもとづいて評価する。

関連する科目

  • MCS.T211 : 応用微分積分
  • MCS.T203 : 応用線形代数
  • MCS.T223 : 数理統計学
  • MCS.T212 : 確率論基礎

履修の条件・注意事項

線形代数、微積分、確率・統計に関する基本的な知識・技能を有していること。

その他

第一回目の講義はG1-103講義室で6月14日金曜に行います。