2024年度 学院等開講科目 情報理工学院 数理・計算科学系
代数系
- 開講元
- 数理・計算科学系
- 担当教員
- 土岡 俊介 / 梅原 雅顕 / 西畑 伸也 / 荒井 迅 / 室伏 俊明 / 鈴木 咲衣 / 高橋 仁 / 一木 俊助
- 授業形態
- 講義/演習 (対面型)
- メディア利用科目
- -
- 曜日・時限
(講義室) - 月5-8 (W8E-307(W833)) / 木5-6 (W8E-307(W833))
- クラス
- -
- 科目コード
- MCS.T231
- 単位数
- 210
- 開講時期
- 2024年度
- 開講クォーター
- 4Q
- シラバス更新日
- 2025年3月17日
- 使用言語
- 日本語
シラバス
授業の目的(ねらい)、概要
数理・計算科学において,代数構造は基本的な骨組みとして重要な役割をはたしている.本講義の目的は,代数系についての基礎事項の解説,具体的な講義項目は,合同式,群,部分群,準同型,商群,準同型定理,環,イデアル,有限体など,さらに受講者が数理・計算科学に応用するための基礎を築くことである.
到達目標
本講義を履修することにより,数理・計算科学に登場する代数構造を扱う数学的手法の基礎を理解することを到達目標とする.さらに,それらを具体的な問題に応用できるようになる.
キーワード
代数,群,環,体
学生が身につける力
- 専門力
- 教養力
- コミュニケーション力
- 展開力 (探究力又は設定力)
- 展開力 (実践力又は解決力)
授業の進め方
代数系の基本的な事項を講義するとともに演習を行う.
授業計画・課題
授業計画 | 課題 | |
---|---|---|
第1回 | 整数と合同式 | 講義の内容を理解する. |
第2回 | 乗法群 | 講義の内容を理解する. |
第3回 | 第2回までの内容に関する演習 | 演習により総合的な理解度を高める. |
第4回 | 群の定義 | 講義の内容を理解する. |
第5回 | 群の具体例 | 講義の内容を理解する. |
第6回 | 第5回までの内容に関する演習 | 演習により総合的な理解度を高める. |
第7回 | 部分群 | 講義の内容を理解する. |
第8回 | 準同型,核,像 | 講義の内容を理解する. |
第9回 | 第8回までの内容に関する演習 | 演習により総合的な理解度を高める. |
第10回 | 剰余群 | 講義の内容を理解する. |
第11回 | 準同型定理 | 講義の内容を理解する. |
第12回 | 第11回までの内容に関する演習 | 演習により総合的な理解度を高める. |
第13回 | 群の直積 | 講義の内容を理解する. |
第14回 | 環の定義 | 講義の内容を理解する. |
第15回 | 第14回までの内容に関する演習 | 演習により総合的な理解度を高める. |
第16回 | イデアルと剰余環 | 講義の内容を理解する. |
第17回 | 体 | 講義の内容を理解する. |
第18回 | 第17回までの内容に関する演習 | 演習により総合的な理解度を高める. |
第19回 | 多項式環 | 講義の内容を理解する. |
第20回 | 有限体 | 講義の内容を理解する. |
第21回 | 第20回までの内容に関する演習 | 演習により総合的な理解度を高める. |
第22回 | 代数体 | 講義の内容を理解する. |
準備学修(事前学修・復習)等についての指示
学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ本学の学修規程で定められた時間を目安に行う。
教科書
講義のwebページを作成し,そこから資料をダウンロードできるようにする.
参考書、講義資料等
講義中に紹介する.
成績評価の方法及び基準
試験および演習の成績で評価をする.
関連する科目
- MCS.T203 : 応用線形代数
- MCS.T201 : 集合と位相第一
履修の条件・注意事項
特になし.