2024 Faculty Courses School of Materials and Chemical Technology Department of Chemical Science and Engineering Graduate major in Nuclear Engineering
Nuclear Reactor Theory I
- Academic unit or major
- Graduate major in Nuclear Engineering
- Instructor(s)
- Toru Obara / Chikako Ishizuka
- Class Format
- Lecture/Exercise (Face-to-face)
- Media-enhanced courses
- -
- Day of week/Period
(Classrooms) - 5-8 Mon
- Class
- -
- Course Code
- NCL.N402
- Number of credits
- 110
- Course offered
- 2024
- Offered quarter
- 1Q
- Syllabus updated
- Mar 14, 2025
- Language
- English
Syllabus
Course overview and goals
This class aims to understand the fundamental physical theory which are needed to understand the principals of nuclear reactors. First, there will be the explanation about the nuclear reaction and neutron interactions. After that, there will be the explanation about the neutron spectrum in nuclear reactors. At the last, the core configuration of each reactor type and the infinite multiplication factor calculation will be explained.
Course description and aims
By the end of course, the students will be able to perform the following.
1) Explain the nuclear reactions and neutron interactions which are important in nuclear reactors and perform fundamental analysis of neutron interactions.
2) Explain the neutron spectrum in nuclear reactors and perform the fundamental analysis.
3) Explain the core configuration of each nuclear reactor type and perform fundamental analysis of multiplication factors in infinite medium.
Keywords
nuclear reactions, neutron interactions, neutron distributions in energy, nuclear reactor types, infinite multiplication factor
Competencies
- Specialist skills
- Intercultural skills
- Communication skills
- Critical thinking skills
- Practical and/or problem-solving skills
Class flow
After the lecture for each topic, exercises will be given to students to deepen the understanding of the topic.
Course schedule/Objectives
Course schedule | Objectives | |
---|---|---|
Class 1 | Nuclear reactions | Explain the binding energy and fundamental nuclear reactions and perform the fundamental analysis. |
Class 2 | Neutron interactions (1) Microscopic and macroscopic cross sections | Explain microscopic and macroscopic cross sections and perform the fundamental analysis. |
Class 3 | Neutron interactions (2) Cross section energy dependence and neutron scattering | Explain the cross section energy dependence and the neutron scattering, and perform the fundamental analysis. |
Class 4 | Neutron distributions in energy (1) Fast neutrons, neutron slowing down | Explain the neutron cross section of nuclear fuels, moderator and neutron slowing down, and perform the fundamental analysis. |
Class 5 | Neutron distributions in energy (2) Energy self-shielding, thermal neutron and energy-averaged cross sections | Explain the energy self-shielding, thermal neutron spectrum and energy-averaged cross sections, and perform fundamental analysis. |
Class 6 | The power reactor core (1) Core configuration and fast reactor lattices | Explain the core configuration of each reactor type and the multiplication factor in fast reactor lattices, and perform the fundamental analysis. |
Class 7 | The power reactor core (2) Thermal reactor lattices and the four factor formula | Explain the multiplication factor in thermal reactor lattices and the four factor formula, and perform the fundamental analysis. |
Study advice (preparation and review)
To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.
Textbook(s)
E.E. Lewis, “Fundamentals of Nuclear Reactor Physics”, Academic Press (2008). ISBN: 978-0-12-3-370631-7
Reference books, course materials, etc.
John R. Lamarsh, “Introduction to Nuclear Reactor Theory”, Addison-Wesley Publishing Company, Inc. (1965).
James J. Duderstadt, Louis J. Hamilton, “Nuclear Reactor Analysis”, John Wiley & Sons, Inc. (1976).
George I. Bell, Samuel Glasstone, “Nuclear Reactor Theory”, Robert E. Krieger Publishing Co., Inc. (1970).
Samuel Glasstone, Alexander Sesonske, "Nuclear Reactor Engineering", Chapman & Hall, Inc. (1994).
Weston M. Stacey, “Nuclear Reactor Physics”, WILEY-VCH Verlag GmbH & Co. KGaA (2004).
Raymond L. Murray and Keith E. Holbert, "Nuclear Energy: An Introduction to The Concepts, Systems and Application of Nuclear Processes Seventh Edition", Elsevier Ltd. (2013).
Evaluation methods and criteria
Students are assessed the understanding of fundamental phenomenon which are important to understand the principal of nuclear reactors and the skill to analyze.
Assignments: 50%
Final examination: 50%
Related courses
- NCL.N406 : Nuclear Reactor Theory II
Prerequisites
General knowledge about calculus
Contact information (e-mail and phone) Notice : Please replace from ”[at]” to ”@”(half-width character).
tobara[at]zc.iir.titech.ac.jp (Prof. Obara)
Office hours
Prior appointment by e-mail is required.