トップページへ

2024年度 学院等開講科目 工学院 経営工学系 経営工学コース

上級非協力ゲーム理論

開講元
経営工学コース
担当教員
河﨑 亮
授業形態
講義 (対面型)
メディア利用科目
-
曜日・時限
(講義室)
月3-4 (W9-311) / 木3-4 (W9-311)
クラス
-
科目コード
IEE.B403
単位数
200
開講時期
2024年度
開講クォーター
2Q
シラバス更新日
2025年3月14日
使用言語
英語

シラバス

授業の目的(ねらい)、概要

本講義では上級レベルの非協力ゲーム理論を数学を用いながら学ぶ.本授業で扱うトピックは以下のとおり(1)戦略形ゲーム,戦略の支配,ナッシュ均衡,(2)ポテンシャルゲームやスーパーモジュラーゲーム,(3)展開形ゲーム,部分ゲーム完全均衡,逐次均衡,完全均衡,(4)繰り返しゲーム,(5)情報不完備ゲーム.

多くの経済学の理論的研究において,ゲーム理論の知識は必要不可欠になっている.本授業では,上級レベルの非協力ゲーム理論の知識を使って,より複雑な社会経済システムを理論的に分析するためのツールを学ぶことを目的とする.

到達目標

本講義を履修することによって次の能力を修得する。
1)様々な社会経済システムをより高度な非協力ゲーム理論を用いてモデルを構築できる
2)構築したモデルのナッシュ均衡,部分ゲーム完全均衡,逐次均衡等を求めることができ
3)論理的思考が身につき,複雑な社会的現象を論理的に説明することができる
4)非協力ゲーム理論を用いた学術論文を読むために必要な基礎知識を得ることができる

キーワード

戦略形ゲーム,ナッシュ均衡,ポテンシャルゲーム,スーパーモジュラーゲーム,展開形ゲーム,部分ゲーム完全均衡,逐次均衡,完全均衡

学生が身につける力

  • 専門力
  • 教養力
  • コミュニケーション力
  • 展開力 (探究力又は設定力)
  • 展開力 (実践力又は解決力)

授業の進め方

毎回講義の開始数分で前回の簡単な復習を行います.また,時間が余った場合には練習問題の解説を演習方式で行う予定です.

授業計画・課題

授業計画 課題
第1回 戦略形ゲームの数学的定義,戦略の支配の定義 各授業内で提示します.
第2回 支配されている戦略の逐次的消去
第3回 ナッシュ均衡
第4回 ナッシュ均衡の存在証明
第5回 ポテンシャルゲーム
第6回 単調比較静学
第7回 スーパーモジュラーゲーム
第8回 展開形ゲームの数学的表現
第9回 部分ゲームと部分ゲーム完全均衡
第10回 繰り返しゲームとフォーク定理
第11回 完全ベイジアン均衡,逐次均衡,完全均衡
第12回 情報不完備ゲーム(1) -ベイジアンゲーム,ベイジアンナッシュ均衡
第13回 情報不完備ゲーム(2) -応用例
第14回 復習および質問時間

準備学修(事前学修・復習)等についての指示

学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。

教科書

特になし.授業資料はオンライン(T2SCHOLA)にて配布予定.

参考書、講義資料等

Vega-Redondo, F. Economics and the Theory of Games. Cambridge: Cambridge University Press, 2003.
Mas-Colell, A., M. Whinston, and J. Green. Microeconomic Theory. New York: Oxford University Press, 1995.

成績評価の方法及び基準

レポートにより評価する.状況によっては,期末試験の替わりに期末レポートを出題する場合がある.

関連する科目

  • IEE.B401 : 上級ミクロ経済学
  • IEE.B402 : 上級マクロ経済学
  • IEE.B404 : 上級協力ゲーム理論
  • IEE.B405 : 上級計量経済学
  • IEE.B431 : ミクロ経済学特講

履修の条件・注意事項

「非協力ゲーム理論」と同等の知識を有すること.