2024 Faculty Courses School of Engineering Department of Electrical and Electronic Engineering Graduate major in Electrical and Electronic Engineering
Pulsed Power Technology
- Academic unit or major
- Graduate major in Electrical and Electronic Engineering
- Instructor(s)
- Shungo Zen / Nozomi Takeuchi
- Class Format
- Lecture (Face-to-face)
- Media-enhanced courses
- -
- Day of week/Period
(Classrooms) - 1-2 Tue / 1-2 Fri
- Class
- -
- Course Code
- EEE.P461
- Number of credits
- 200
- Course offered
- 2024
- Offered quarter
- 3Q
- Syllabus updated
- Mar 14, 2025
- Language
- English
Syllabus
Course overview and goals
This lecture provides the generation, diagnostics, and applications of high power electrical pulses. A wide range of pulsed power technology will be discussed, including fundamental as well as advanced concept. Topics covered are high-voltage generators, energy storage devices and circuits, high power switches, pulse forming networks, pulse forming lines, magnetic pulse compression circuits, and the electromagnetic and optical diagnostics of pulsed power systems. Applications of pulsed power technology for lasers, non-thermal plasma, and environmental and medical applications will be discussed. Students are required to simulate typical pulsed power circuits and gas breakdown.
The students will comprehensively understand pulsed power technologies, which have been widely used in industry, through the generation, diagnostics, and applications of high power electrical pulses.
Course description and aims
Upon completion of this lecture students should be able to design pulsed power circuits including high-power switches, pulse forming networks/lines with discharge loads, using LTSpice circuit simulator or MATLAB software to solve various pulsed power circuits and gas breakdown. They should also be able to choose appropriate methods of measuring, grounding and shielding techniques for pulsed large currents and high voltages, and understand the applications of pulsed power technology.
Keywords
Pulsed power, high voltage, large current, breakdown phenomena
Competencies
- Specialist skills
- Intercultural skills
- Communication skills
- Critical thinking skills
- Practical and/or problem-solving skills
Class flow
Lessons contain not only a lecture but also tactical exercises using LTspice and MATLAB.
Course schedule/Objectives
Course schedule | Objectives | |
---|---|---|
Class 1 | Basic concept and applications of pulsed power systems, fundamental knowledge of electromagnetic theory, simulation tool (LTSpice), and project guidance | Understand the basic concept and applications of pulsed power systems. |
Class 2 | Capacitive energy storage and LCR circuit | Understand capacitive energy storage and explain the behavior of an LCR circuit. |
Class 3 | Inductive energy storage and opening switch | Understand inductive energy storage and explain the behavior of circuits with opening switches. |
Class 4 | Charge transfer circuit: CLC and high voltage capacitors | Explain the behavior of a charge transfer circuit with high voltage capacitors. |
Class 5 | Circuit components for pulsed power circuit | Explain circuit components for pulsed power circuits. |
Class 6 | High voltage DC generator, pulsed generator: Marx circuit | Understand the operating principles of high voltage DC generators and pulsed generators. |
Class 7 | Gas, liquid and solid breakdown | Explain gas, liquid and solid breakdown phenomena. |
Class 8 | High voltage and fast switches and their modeling | Understand the characteristics of high voltage and fast switches and the method for modeling. |
Class 9 | Rate equation, simulation tool (Matlab), Gas discharge characteristics and modeling | Understand the characteristics of gas discharges and the method for modeling using rate equations. |
Class 10 | Pulse forming network | Explain the behavior of a pulse forming network. |
Class 11 | Pulse forming line | Explain the behavior of a pulse forming line. |
Class 12 | Magnetic pulse compression circuit | Explain the behavior of a magnetic pulse compression circuit. |
Class 13 | Pulsed high voltage and pulsed large current diagnostics, grounding and shielding techniques | Explain diagnostics of pulsed high voltage and pulsed large current and techniques of grounding and shielding. |
Class 14 | Pulsed power applications | Examples of industrial pulsed power applications. |
Study advice (preparation and review)
To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.
Textbook(s)
None are required. Lectures will be made up of power point presentations and notes written on the board.
Reference books, course materials, etc.
Pulsed Power Systems, Bluhm, Hansjoachim, Springer-Verlag GmbH,
Transient electronics -Pulsed Circuit Technology, Paul W. Smith, Wiley
Evaluation methods and criteria
Evaluated by reports for transient circuit and operation analyses of pulsed power circuit using LTspice and MATLAB.
Related courses
- EEE.P451 : Plasma Engineering
- EEE.P331 : High Voltage Engineering
Prerequisites
Students should have an experience of high-voltage experiments and knowledge of basic electromagnetic theory and transient analysis of circuits.