2024 Faculty Courses School of Engineering Department of Mechanical Engineering Graduate major in Mechanical Engineering
Silent Engineering
- Academic unit or major
- Graduate major in Mechanical Engineering
- Instructor(s)
- Nobuyuki Iwatsuki
- Class Format
- Lecture (Face-to-face)
- Media-enhanced courses
- -
- Day of week/Period
(Classrooms) - 5-6 Tue
- Class
- -
- Course Code
- MEC.D532
- Number of credits
- 100
- Course offered
- 2024
- Offered quarter
- 2Q
- Syllabus updated
- Mar 14, 2025
- Language
- English
Syllabus
Course overview and goals
The course offers the knowledge on the methods to quantitatively estimate noise radiating from vibrating plates and to passively reduce the noise and includes the modal analysis and forced vibration analysis of plates, the estimation of sound power radiating from the plates based on the vibration analyses, the estimation of sound power transmitting plates excited by sound, and the reduction of sound power with the structural optimization or damping materials.
Because noise radiation from vibrating machinery strongly affects the added value of the machinery, it is expected to reveal the propagation mechanism from vibration to noise and to reduce noise radiating from machinery. As the application of learning of mechanical dynamics in Mechanical Engineering Course, students will understand the energy balance in vibrating plate and the estimation of frequency spectrum of sound radiation power based on the vibration analysis and sound field analysis. Moreover, students will learn the methods to reduce the sound radiation with the structural optimization or damping materials by taking account of cost performance.
Course description and aims
By the end of this course, students will be able to:
1. Explain the outline of calculation process to analyze vibration mode and forced vibration of plate
2. Explain the relation between the energy balance in vibrating plate and the sound radiation power
3. Explain the outline of the methods to estimate frequency spectrum of sound power radiating from vibrating plate
4. Explain the structural optimization to reduce noise radiation
5. Explain the principle to reduce vibration with damping materials
Keywords
Vibration and noise, sound radiation power, modal analysis, forced vibration, parameters to estimate noise, structural optimization to reduce noise radiation, vibration damping
Competencies
- Specialist skills
- Intercultural skills
- Communication skills
- Critical thinking skills
- Practical and/or problem-solving skills
Class flow
Important issues are summarized at the end of the class every week. Students are expected to understand what they learn by themselves.
Course schedule/Objectives
Course schedule | Objectives | |
---|---|---|
Class 1 | Modal analysis and forced vibration analysis of plate - Introduction of various methods to theoretically analyze flexural vibration of plate - | Understanding of equation of vibration, modal analysis and forced vibration of plate |
Class 2 | Examples of analysis for various plates - Fixing conditions of plates and the results of modal analysis - | Understanding of mode shape based on node and anti-node |
Class 3 | Formation of sound field due to vibrating source - Point sound source and wave equation - | Understanding of Rayleigh's equation |
Class 4 | Fundamental equations to estimate sound power radiating from vibrating plate - Energy balance in vibrating plate and parameters to estimate sound radiation power - | Understanding of parameters to estimate sound radiation power |
Class 5 | Examples of estimation of sound power radiating from vibrating plate - Estimation of sound power radiating from rectangular plates and circular plates - | Understanding of the relation between frequency spectrum of sound radiation power and natural frequencies of plate |
Class 6 | Structural optimization to reduce sound radiation power - Noise reduction by changing plate thickness or adding ribs or hollows on plates - | Understanding of the objective function and optimization method |
Class 7 | Setting damping materials to reduce sound radiation power - Noise reduction with constraint and non-constraint dampers - | Understanding of damping principle |
Study advice (preparation and review)
To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.
Textbook(s)
Not required.
Reference books, course materials, etc.
Several handouts will be often distributed. The following textbooks are recommended as reference books:
1. W. Weaver Jr., S. Timoshenko and D. H. Young, Vibration Problems in Engineering (Fifth Edition), John Wiley and Sons (1990).
2. K. Suzuki, K. Nishida, K. Maruyama and T. Watanabe, Vibrations and Acoustics for Mechanical Engineering, Saiensu-Sha Co. Ltd. (2000).
Evaluation methods and criteria
Students' knowledge on the process to estimate the frequency spectrum of sound power radiating from vibrating plate based on accurate vibration analysis and sound radiation analysis and the methods to reduce sound power with structural optimization and damping optimization is accessed via submitted reports(100%) on several issues.
Related courses
- MEC.D431 : Advanced Sound and Vibration Measurement
- MEC.D531 : Experimental Modal Analysis for Structural Dynamics
Prerequisites
Students must have successfully completed 'Mechanical vibration' (MEC.D201) or have equivalent knowledge.
Contact information (e-mail and phone) Notice : Please replace from ”[at]” to ”@”(half-width character).
Nobuyuki Iwatsuki: iwatsuki.n.aa[at]m.titech.ac.jp, 03-5734-2538
Office hours
Contact by e-mail in advance to schedule an appointment.