トップページへ

2024 Faculty Courses School of Engineering Undergraduate major in Industrial Engineering and Economics

Cooperative Game Theory

Academic unit or major
Undergraduate major in Industrial Engineering and Economics
Instructor(s)
Ryo Kawasaki
Class Format
Lecture (Face-to-face)
Media-enhanced courses
-
Day of week/Period
(Classrooms)
1-2 Mon / 1-2 Thu
Class
-
Course Code
IEE.B302
Number of credits
200
Course offered
2024
Offered quarter
1Q
Syllabus updated
Mar 14, 2025
Language
Japanese

Syllabus

Course overview and goals

This course covers the elementary concepts of cooperative game theory. The topics include the bargaining problem and the Nash bargaining solution, games in characteristic function form, and applications such as voting games, markets, and topics built off of optimization problems.

The objective of this course is for students to first grasp the basic concepts of cooperative game theory and then apply them to problems in economics and industrial engineering. Ideally, the application of the theory should span to a broader range of situations than was possible by only using noncooperative game theory.

Course description and aims

By completing this course, students will have the necessary tools to do the following:
1) Build an economic model and to apply cooperative game theory.
2) Calculate the Nash bargaining solution, core, nucleolus, and Shapley value in their respective game models.
3) Think and explain phenomenon in a logical manner.

Keywords

Bargaining problem, Nash bargaining solution, games in characteristic function form, core, nucleolus, Shapley value, matching problem

Competencies

  • Specialist skills
  • Intercultural skills
  • Communication skills
  • Critical thinking skills
  • Practical and/or problem-solving skills

Class flow

This class will be held in lecture form. If time allows, some exercise problems will be explained.

Course schedule/Objectives

Course schedule Objectives
Class 1 What is cooperative game theory, and how is it different from noncooperative game theory? Details will be given in each lecture.
Class 2 The bargaining problem and the Nash bargaining solution
Class 3 The four axioms of the Nash bargaining solution
Class 4 Games in characteristic function form and the core
Class 5 Voting games and the core
Class 6 The core of markets with indivisible goods
Class 7 Minimum cost spanning tree games and the core
Class 8 Definition of the nucleolus
Class 9 Application of the nucleolus
Class 10 Definition of the Shapley value and examples
Class 11 Voting indices
Class 12 The folk solution for minimum cost spanning tree games
Class 13 Two-sided matching problem
Class 14 Problems related to the two-sided matching problem

Study advice (preparation and review)

To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.

Textbook(s)

No designated textbook. Lecture notes will be distributed online (T2SCHOLA).

Reference books, course materials, etc.

Muto, S. Introduction to Game Theory. Tokyo: Nikkei Publishing Inc., 2001. (Japanese)
Funaki, Y. Exercises in Game Theory. Tokyo: Saiensu-sha Co. Ltd. Publishers, 2004. (Japanese)
Muto, S. Game Theory. Tokyo: Ohmsha, 2011. (Japanese)
Kurino, M. Game Theory and Matching: Tokyo: Nikkei Publishing Inc., 2019. (Japanese)

Evaluation methods and criteria

Grades will be based on short quizzes, homework assignments, and the final exam (to be held in the classroom). How the final exam will be conducted may be subject to change.

Related courses

  • IEE.B201 : Microeconomics I
  • IEE.B202 : Microeconomics II
  • IEE.B205 : Noncooperative Game Theory
  • IEE.A201 : Basic Mathematics for Industrial Engineering and Economics

Prerequisites

No prerequisites.