トップページへ

2024 Faculty Courses School of Engineering Undergraduate major in Systems and Control Engineering

Mathematics for Systems and Control B

Academic unit or major
Undergraduate major in Systems and Control Engineering
Instructor(s)
Hidenori Kosaka
Class Format
Lecture/Exercise (Face-to-face)
Media-enhanced courses
-
Day of week/Period
(Classrooms)
5-7 Mon / 5-7 Thu
Class
-
Course Code
SCE.A202
Number of credits
210
Course offered
2024
Offered quarter
3Q
Syllabus updated
Mar 17, 2025
Language
Japanese

Syllabus

Course overview and goals

This course focuses on the solving methods of partial differential equations. Firstly, the classification of partial differential equations and their derivation are presented. Secondly, the separation variables, eigenfunction expansion, Fourier transform, and Laplace transform are presented as the solving methods of parabolic partial differential equation. By combining lectures and exercises, the course enables students to understand and acquire the fundamentals of mathematical tools widely applicable to analysis of physical phenomena and design of control systems.

Partial differential equations are used for mathematical expression of various physical phenomena such as electromagnetic field, thermo-flow field, and also for design of control systems. In this course, the solving methods of partial differential equations are explained from the viewpoint of applying them to the engineering problems rather than mathematical rigorousness. The 1-D heat transfer in a rod is taken as an example of solving the partial equation. Students will understand and acquire the fundamentals on solving methods of parabolic partial differential equations for the application of them to engineering issues.

Course description and aims

By the end of this course, students will be able to:
1) Explain the basic classification and properties of partial differential equations.
2) Apply separation variables to solve simple parabolic partial differential equations.
3) Apply eigenfunction expansion to solve simple parabolic partial differential equations.
4) Apply Fourier transform to solve simple parabolic partial differential equations.
5) Apply Laplace transform to solve simple parabolic partial differential equations.

Keywords

parabolic partial differential equation, separation variables, eigenfunction expansion, Fourier transform, Laplace transform

Competencies

  • Specialist skills
  • Intercultural skills
  • Communication skills
  • Critical thinking skills
  • Practical and/or problem-solving skills

Class flow

At the beginning of each class, solutions to exercise problems that were assigned during the previous class are reviewed. Towards the end of class, students are given exercise problems related to the lecture given that day to solve. To prepare for class, students should read the course schedule section and check what topics will be covered. Required learning should be completed outside of the classroom for preparation and review purposes.

Course schedule/Objectives

Course schedule Objectives
Class 1 Classification and properties of partial differential equations Understand the properties of parabolic, hyperbolic, and elliptic partial differential equations
Class 2 Derivation of partial differential equations (Heat equation) Understand the expression of physical phenomena by partial differential equations
Class 3 Boundary and initial conditions Understand the properties of boundary and initial conditions
Class 4 Separation variables method Apply separation variables method for solving parabolic partial differential equation
Class 5 Nonhomogeneous boundary conditions Transformation of nonhomogeneous boundary condition to homogeneous one
Class 6 Eigenvalue Understand Sturm-Liouville problem
Class 7 Transformation of partial differential equation Understand the transform of partial differential equation to use the separation variables method
Class 8 Nonhomogeneous partial differential equation Apply eigenfunction expansion method for solving parabolic partial differential equation
Class 9 Integral transform Understand sine and cosine transforms of partial differential equation
Class 10 Fourier series and Fourier transform Understand the properties of Fourier series and transform
Class 11 Fourier transform Apply Fourier transform for solving parabolic partial differential equation
Class 12 Laplace transform Apply Laplace transform for solving parabolic partial differential equation
Class 13 Duhamel’s principle Understand Duhamel’s principle
Class 14 Convection-diffusion equation Understand the use of moving coordinates to reduce the convection effect

Study advice (preparation and review)

To enhance effective learning, students are encouraged to spend a certain length of time outside of class on preparation and review (including for assignments), as specified by the Tokyo Institute of Technology Rules on Undergraduate Learning (東京工業大学学修規程) and the Tokyo Institute of Technology Rules on Graduate Learning (東京工業大学大学院学修規程), for each class.
They should do so by referring to textbooks and other course material.

Textbook(s)

Materials will be provided if they are required.

Reference books, course materials, etc.

Reference book: Farlow, Stanley, Partial differential equations for Scientists and Engineers, Dover Publications, Inc.(1996)

Evaluation methods and criteria

Students' knowledge on solving partial differential equations will be assessed by the final examination.

Related courses

  • Calculus I
  • Calculus II
  • Mathematics for Systems and Control A
  • Fundamentals of System Science
  • System Modeling

Prerequisites

Students are expected to have successfully completed both Calculus I and Calculus II or have equivalent knowledge.