2024 Faculty Courses School of Science Department of Physics Graduate major in Physics
Superconductivity
- Academic unit or major
- Graduate major in Physics
- Instructor(s)
- Satoshi Okuma
- Class Format
- Lecture (Face-to-face)
- Media-enhanced courses
- -
- Day of week/Period
(Classrooms) - 5-6 Fri
- Class
- -
- Course Code
- PHY.C443
- Number of credits
- 100
- Course offered
- 2024
- Offered quarter
- 2Q
- Syllabus updated
- Mar 14, 2025
- Language
- English
Syllabus
Course overview and goals
When superconductors are cooled to extremely low temperatures, the electrical resistance goes to zero and they show electrical and magnetic properties that are not seen in usual metals. Students will learn that the reason lies in quantum nature appearing on a macroscopic scale. In this course, after getting an overview of various properties of superconductivity, students will study superfluidity and Bose-Einstein condensation, the macroscopic description of superconductivity called the GL theory, the microscopic one called the BCS theory, electrodynamics of superconductivity, magnetic properties, such as, quantized flux in type-II superconductors: they will also study unconventional superconductivity and the latest topics related to superconductivity.
Course description and aims
[Learning outcomes] Students will learn fundamentals of physics on superconductivity, which is a macroscopic quantum phenomenon that appears at low temperatures.
[Theme] This course focuses on unusual electrical, magnetic, and thermodynamic properties that superconductors show at low enough temperatures. Students are expected to understand the underlying physics and learn how to describe them.
Keywords
Bose-Einstein condensation, zero resistance, Meissner effect, macroscopic quantum phenomenon, London equations, GL theory, BCS theory, quantized flux, type-I/type-II superconductors, Josephson effect, SQUID, unconventional superconductors
Competencies
- Specialist skills
- Intercultural skills
- Communication skills
- Critical thinking skills
- Practical and/or problem-solving skills
Class flow
Handouts will be distributed at the beginning of each class. Students are given exercise problems related to the lecture to better understand the contents.
Course schedule/Objectives
Course schedule | Objectives | |
---|---|---|
Class 1 | Properties of superconductivity | Explain characteristic properties of superconductors. |
Class 2 | Bose-Einstein condensation - Superfluidity and superconductivity | Explain the concept of Bose-Einstein condensation and its relation to superfluidity and superconductivity. |
Class 3 | Macroscopic (phenomenological) description of superconductivity - the GL theory | Explain how the GL theory describes the superconducting properties near Tc. |
Class 4 | Microscopic description of superconductivity - the BCS theory(1) | Calculate the BCS ground-state energy. |
Class 5 | Microscopic description of superconductivity - the BCS theory(2) | Explain thermodynamic quantities of superconductors deduced from the BCS theory. |
Class 6 | Electrodynamics of superconductors | Describe the basic equations for electrodynamics of superconductivity. |
Class 7 | Magnetic properties of type-II superconductors, Recent topics on superconductivity, Unconventional superconductivity | Explain why each magnetic flux in type-II superconductors is quantized and the flux lines form the lattice. |
Study advice (preparation and review)
To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.
Textbook(s)
To be specified by the instructor.
Reference books, course materials, etc.
To be specified by the instructor. Handouts (pdf file) will be distributed.
Evaluation methods and criteria
Based on exams.
Related courses
- PHY.C442 : Superfluidity
- PHY.C444 : Quantum Transport
Prerequisites
No prerequisites.