2024年度 学院等開講科目 理学院 数学系 数学コース
数学特別講義F
- 開講元
- 数学コース
- 担当教員
- BEZ Richard Neal / 木下 真也
- 授業形態
- 講義 (対面型)
- メディア利用科目
- -
- 曜日・時限
(講義室) - 集中講義等 (本館2階201数学系セミナー室)
- クラス
- -
- 科目コード
- MTH.E436
- 単位数
- 200
- 開講時期
- 2024年度
- 開講クォーター
- 4Q
- シラバス更新日
- 2025年3月14日
- 使用言語
- 英語
シラバス
授業の目的(ねらい)、概要
本講義の主要なテーマは, ユークリッド空間上のBrascamp-Lieb不等式である. まず, Holderの不等式, Youngの畳み込み不等式, Loomis-Whitney不等式などのいくつかの具体例を紹介し, L^p空間や線形作用素の補間定理についての準備も行う. その後, Liebの定理やJ. Bennett, A. Carbery, M. Christ, T. TaoによるBrascamp-Lieb定数の有限性の特徴づけなど, Brascamp-Lieb不等式の一般理論について説明する. 一般理論の一部として, 幾何学的Brascamp-Lieb不等式の熱流による証明を学ぶ.
Brascamp-Lieb不等式は, ここ数年内に凸幾何学, 調和解析, 幾何学的測度論, 数論などの数学分野に大きな影響を与えたものであるが, この授業科目の主な目標はBrascamp-Lieb不等式の基礎理論を深く理解することである.
到達目標
・Brascamp-Lieb不等式の具体例を扱えるようになること
・Brascamp-Lieb不等式の一般理論を理解すること
・幾何学的Brascamp-Lieb不等式の役割を理解すること
・熱流やBrascamp-Lieb定数の因数分解を使用してLiebの定理を証明する方法を理解すること
・Bennett-Carbery-Christ-TaoによるBrascamp-Lieb定数の有限性の特徴づけを証明する方法を理解すること
キーワード
多重線形不等式, Holderの不等式, Youngの畳み込み不等式, Loomis-Whitney不等式, Brascamp-Lieb不等式, 熱流
学生が身につける力
- 専門力
- 教養力
- コミュニケーション力
- 展開力 (探究力又は設定力)
- 展開力 (実践力又は解決力)
授業の進め方
通常の講義形式で行う.また,適宜レポート課題を出す.
授業計画・課題
授業計画 | 課題 | |
---|---|---|
第1回 | 以下の内容を順に解説する予定である : ・L^p空間と補間定理 ・Holderの不等式 ・Youngの畳み込み不等式 ・Loomis-Whitney不等式 ・Brascamp-Lieb不等式 ・Liebの定理 ・Bennett-Carbery-Christ-Taoによる有限性の特徴づけ ・幾何学的Brascamp-Lieb不等式 ・熱流 ・熱流による幾何学的Brascamp-Lieb不等式の証明 ・Bennett-Carbery-Christ-TaoによるLiebの定理の証明 ・Bennett-Carbery-Christ-Taoによる有限性の特徴づけの証明 | 講義中に指示する。 |
準備学修(事前学修・復習)等についての指示
学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。
教科書
使用しない
参考書、講義資料等
J. Bennett, A. Carbery, M. Christ, T. Tao, The Brascamp-Lieb inequalities: finiteness, structure and extremals, Geometric and Functional Analysis, Vol. 17 (2008), pp. 1343-1415
(arXivバージョン: https://arxiv.org/abs/math/0505065)
成績評価の方法及び基準
レポート課題(100%)による.
関連する科目
- MTH.C351 : 函数解析
- MTH.C305 : 実解析第一
- MTH.C306 : 実解析第二
- MTH.C341 : 微分方程式概論第一
- MTH.C342 : 微分方程式概論第二
履修の条件・注意事項
なし