2024年度 学院等開講科目 理学院 物理学系
解析力学(講義)
- 開講元
- 物理学系
- 担当教員
- 須山 輝明
- 授業形態
- 講義 (対面型)
- メディア利用科目
- -
- 曜日・時限
(講義室) - 月3-4 (WL2-101(W611)) / 木3-4 (WL2-101(W611))
- クラス
- -
- 科目コード
- PHY.Q206
- 単位数
- 200
- 開講時期
- 2024年度
- 開講クォーター
- 2Q
- シラバス更新日
- 2025年3月17日
- 使用言語
- 日本語
シラバス
授業の目的(ねらい)、概要
数学的に洗練されより一般性の高い形にニュートン力学を書き直したものが解析力学であり、ラグランジュ形式とハミルトン形式に大別される。解析力学により問題を効率的に解くことができるようになるだけではなく、量子力学へと至る道が切り開かれることになる。
本講義ではラグランジュ形式ならびにハミルトン形式の力学における以下の項目を習得することを目的とする。
到達目標
・ラグランジアンやハミルトニアンを使って力学の問題を表現し解くことができる。
・物理学における対称性の役割を説明できる。
キーワード
ラグランジアン、ハミルトニアン、対称性
学生が身につける力
- 専門力
- 教養力
- コミュニケーション力
- 展開力 (探究力又は設定力)
- 展開力 (実践力又は解決力)
授業の進め方
講義では基本的概念の説明や定式化を中心に進める。
授業計画・課題
授業計画 | 課題 | |
---|---|---|
第1回 | 運動方程式と座標系 | 各回の講義内容と結果を理解し、それらを自分で導出し説明できるようになること。 また関連した具体的な問題が解けるようになること。 |
第2回 | オイラー・ラグランジュ方程式 | |
第3回 | 一般化座標と共変性 | |
第4回 | 最小作用の原理 | |
第5回 | ラグランジアンの構築 | |
第6回 | 対称性と保存則 | |
第7回 | 拘束条件の取り扱い | |
第8回 | 微小振動 | |
第9回 | 位相空間と正準方程式 | |
第10回 | 正準変換 | |
第11回 | リウビルの定理 | |
第12回 | 無限小変換と保存量 | |
第13回 | ポアソン括弧 | |
第14回 | ハミルトン・ヤコビ方程式 |
準備学修(事前学修・復習)等についての指示
学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習をそれぞれ概ね100分を目安に行うこと。
教科書
特になし。
参考書、講義資料等
ランダウ=リフシッツ「力学」(東京図書)
大貫義郎 「解析力学」(岩波書店)
ゴールドスタイン「古典力学」(吉岡書店)
成績評価の方法及び基準
講義の学期末試験により評価する。
関連する科目
- PHY.Q207 : 量子力学入門
履修の条件・注意事項
「解析力学(演習)」と共に履修することを強く勧める。