2024 Faculty Courses School of Science Undergraduate major in Physics
Mathematical Methods in Physics I(Lecture)
- Academic unit or major
- Undergraduate major in Physics
- Instructor(s)
- Akihisa Koga
- Class Format
- Lecture (Face-to-face)
- Media-enhanced courses
- -
- Day of week/Period
(Classrooms) - 1-2 Mon / 1-2 Thu
- Class
- -
- Course Code
- PHY.M204
- Number of credits
- 200
- Course offered
- 2024
- Offered quarter
- 1Q
- Syllabus updated
- Mar 17, 2025
- Language
- Japanese
Syllabus
Course overview and goals
This course focuses on the complex function theory and Fourier series widely applicable to the field of science and engineering.
This course has two aims. The first is to understand the derivative and integral of the complex functions. The other is to understand the basic of the Fourier analysis.
Course description and aims
By the end of this course, students will be able to:
1) explain the basic concept of the complex function theory.
2) understand the derivative and integral of the complex functions and calculate the integral of the real function by means of the residue theorem.
3) explain the conformal map for the holomorphic function and solve two-dimensional Laplace equations.
4) explain the concept of the analytic continuation.
5) explain the concept of the Fourier series for the periodic functions and obtain the series coefficients.
Keywords
complex function, holomorphy, Cauchy's integral theorem, residue theorem, conformal map, analytic continuation, Fourier series
Competencies
- Specialist skills
- Intercultural skills
- Communication skills
- Critical thinking skills
- Practical and/or problem-solving skills
Class flow
To prepare for class, students should read the course schedule section and check what topics will be covered. Required learning should be completed outside of the classroom for preparation and review purposes.
Course schedule/Objectives
Course schedule | Objectives | |
---|---|---|
Class 1 | complex variables | Compute the operations of complex variables. |
Class 2 | holomorphic function | Understand the holomorphic functions |
Class 3 | elementary functions | Understand the elementary functions. |
Class 4 | complex integral 1 | Understand the contour integral in the Gauss plane |
Class 5 | complex integral 2 | Understand the Cauchy's theorem |
Class 6 | power series | Compute the series coefficients. |
Class 7 | residue theorem | Understand the residue theorem |
Class 8 | application of complex integral 1 | Compute the integral for the real function by means of the complex integral. |
Class 9 | application of complex integral 2 | Compute the integral for the real function by means of the complex integral. |
Class 10 | Conformal map | Understand the conformal map |
Class 11 | application of conformal map | Solve the two-dimensional Laplace equations |
Class 12 | analytic continuation | Understand the identity theorem and analytic continuation. |
Class 13 | Riemann surface | Understand the Riemann surface |
Class 14 | Fourier series and Fourier transformation | Compute the Fourier coefficients and Fourier transformations |
Study advice (preparation and review)
To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.
Textbook(s)
物理数学I (古賀昌久著) 丸善出版
Reference books, course materials, etc.
none specified
Evaluation methods and criteria
Students’ course scores are based on final exams.
Related courses
- PHY.M211 : Mathematical Methods in Physics II
- PHY.M330 : Mathematical Methods in Physics III
Prerequisites
No prerequisites are necessary