トップページへ

2024 Faculty Courses School of Science Undergraduate major in Mathematics

Differential Equations I

Academic unit or major
Undergraduate major in Mathematics
Instructor(s)
Yoshiyuki Kagei
Class Format
Lecture (Face-to-face)
Media-enhanced courses
-
Day of week/Period
(Classrooms)
3-4 Wed
Class
-
Course Code
MTH.C341
Number of credits
100
Course offered
2024
Offered quarter
1Q
Syllabus updated
Mar 14, 2025
Language
Japanese

Syllabus

Course overview and goals

After introducing some terminology and fundamental notions on differential equations, we explain elementary method for explicit solutions, general method for solving constant coefficient linear differential equations and some analysis on linear differential equations. This course is to be continued to Differential Equations II.


Differential equations are fundamental notions appearing in all fields of mathematics. Space of solutions have algebraic structure, existence theorems of solutions give various geometric and analytic objects of great interests. This course is an entry to these paths.

Course description and aims

Main topic of this course is a basic theory and its applications of ordinary differential equations of one unknown variable. Ordinary differential equations describe various natural phenomena and physical laws, thus, method of solving equations and its theory are important mathematically as well as for applications. Students are expected to master method of solving differential equations, and to understand the theory to derive properties of solutions.

Keywords

differential equation, initial value problem, separation of variables, complete differential equation, fundamental solution, Duhamel principle

Competencies

  • Specialist skills
  • Intercultural skills
  • Communication skills
  • Critical thinking skills
  • Practical and/or problem-solving skills

Class flow

Standard lecture course.

Course schedule/Objectives

Course schedule Objectives
Class 1 examples of differential equation, solutions of differential equation, initial value problem and boundary value problem Details will be provided during each class session
Class 2 elementary method, separation of variables, homogeneous case, first order linear differential equation Details will be provided during each class session
Class 3 complete differential equation, non-normal form, higher order differential equation Details will be provided during each class session
Class 4 linear ordinary differential equation, exponential function of matrix and constant coefficient system of ordinary differential equations Details will be provided during each class session
Class 5 variable coefficient system of ordinary differential equations and fundamental solution Details will be provided during each class session
Class 6 non-homogeneous equation and Duhamel principle Details will be provided during each class session
Class 7 solution via series expansion Details will be provided during each class session

Study advice (preparation and review)

To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.

Textbook(s)

not specified

Reference books, course materials, etc.

Eiji Yanagida and Ei Shin-Ichiro, "Theory of ordinary differential equations", Asakura Shoten (Japanese)
Koji Kasahara, "Fundamentals of differential equations", Asakura Shoten (Japanese)

Evaluation methods and criteria

Evaluation based on a final exam. Details will be provided in the class.

Related courses

  • MTH.C342 : Differential Equations II

Prerequisites

Students are expected to have passed Calculus I / Recitation, Calculus II / Recitation, Linear Algebra I / Recitation, Linear Algebra II / Recitation.