2023 Faculty Courses School of Life Science and Technology Undergraduate major in Life Science and Technology
Synthetic Biology
- Academic unit or major
- Undergraduate major in Life Science and Technology
- Instructor(s)
- Tomoaki Matsuura / Kosuke Fujishima / Yasunori Aizawa / Naohiro Terasaka / Liam M Longo
- Class Format
- Lecture (Face-to-face)
- Media-enhanced courses
- -
- Day of week/Period
(Classrooms) - 1-2 Tue (M-B07(H101)) / 1-2 Fri (M-B07(H101))
- Class
- -
- Course Code
- LST.A356
- Number of credits
- 200
- Course offered
- 2023
- Offered quarter
- 2Q
- Syllabus updated
- Jul 8, 2025
- Language
- Japanese
Syllabus
Course overview and goals
With the recent development of biotechnology, it has become possible to artificially design and engineer living systems. Research in this field is known as synthetic biology. In this lecture, we will learn the basic techniques in the field of synthetic biology, how they have led to the understanding of living systems, and how they are being implemented in society.
Course description and aims
Students will be able to discuss the basic concepts, fundamental technologies, and their importance in the field of synthetic biology. In other words, the student will be able to discuss the importance of creating biological systems that can be understood by creating them and that contribute to social implementation, using actual examples.
Keywords
Transcriptional networks, genome editing technology, genome synthesis, unnatural amino acids and nucleic acids, artificial cells, evolutionary engineering, biotechnology
Competencies
- Specialist skills
- Intercultural skills
- Communication skills
- Critical thinking skills
- Practical and/or problem-solving skills
Class flow
The lecture will be given by three faculty members and will be given in persion. Students are expected to download the materials necessary for the lecture from OCW before attending the lecture.
Course schedule/Objectives
Course schedule | Objectives | |
---|---|---|
Class 1 | Synthetic biology: the study of synthesizing organisms | To be able to give an overview of synthetic biology. |
Class 2 | DNA to proteins | From DNA to RNA From RNA to protein Transcriptional regulation |
Class 3 | Transcription network 1 | What is a network motif FFL Network Motifs |
Class 4 | Transcription network 2 | Temporal programming of transcriptional networks Network motifs in signal transduction |
Class 5 | Modification of biological systems at the genome level | Explain genomic DNA engineering for the modification and control of cells and individual organisms. To be able to explain the social impact of genome modification technology.Optimal expression level in variable environment |
Class 6 | Modification of biological systems at the transcriptional or metabolic circuit level | Explain technologies to modify and control cells at the transcriptional level and metabolic circuit. |
Class 7 | AI in synthetic biology 1 | Learn to design protein molecules using machine learning and AI |
Class 8 | AI in synthetic biology 2 | Learn to design protein molecules using machine learning and AI in an exercise format. |
Class 9 | Nucleic acid engineering in vitro | To be able to explain the techniques and analytical methods used to utilize natural and unnatural nucleic acid molecules in vitro, as well as research using these techniques |
Class 10 | Protein engineering in vitro | To be able to give an overview of cell-free translation systems and explain the research using them. |
Class 11 | Directed evolution in vitro | Explain the techniques and research examples for evolving nucleic acids and proteins in vitro. |
Class 12 | synthesizing cells | Give an overview of research on creating artificial cells. |
Class 13 | Synthetic Biology and Ethics | To be able to explain the two aspects of synthetic biology: convenience and danger. |
Class 14 | Future of synthetic biology + final exam | The written examination will be conducted in person. |
Study advice (preparation and review)
To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.
Textbook(s)
Handouts
Reference books, course materials, etc.
Synthetic Biology, (Springer International Publishing, Ediotrs, Anton Glieder, Christian P. Kubicek , Diethard Mattanovich , Birgit Wiltschi and Michael Sauer)
Evaluation methods and criteria
Grades are based on assignments and final examinations.
Related courses
- LST.A203 : Biochemistry I
- LST.A218 : Biochemistry II
- LST.A208 : Molecular Biology I
- LST.A213 : Molecular Biology II
- LST.A248 : Molecular Genetics
Prerequisites
A basic knowledge of biology is desirable, but not required.
Contact information (e-mail and phone) Notice : Please replace from ”[at]” to ”@”(half-width character).
Matsuura(matsuura_tomoaki[at]elsi.jp)
Aizawa(yaizawa[at]bio.titech.ac.jp)
Fujishima(fuji[at]elsi.jp)
Terasaka (nterasaka[at]elsi.jp)
Longo (llongo[at]elsi.jp)
Office hours
Email the faculty in advance.