トップページへ

2022年度 学院等開講科目 生命理工学院 生命理工学系 生命理工学コース

生物計算科学

開講元
生命理工学コース
担当教員
伊藤 武彦 / 山田 拓司 / 北尾 彰朗
授業形態
講義 (ライブ型)
メディア利用科目
-
曜日・時限
(講義室)
月1-2 / 木1-2
クラス
-
科目コード
LST.A408
単位数
200
開講時期
2022年度
開講クォーター
3Q
シラバス更新日
2025年7月10日
使用言語
英語

シラバス

授業の目的(ねらい)、概要

マルチオミックス解析から得られる多様かつ膨大な生物情報を解析することで、どのような知識を得ることができるのか。コンピュータを駆使したバイオインフォマティクスの基礎から応用までを理解し、単なるツールとしての技術の習得ではなく、膨大な情報から新たな仮説を導くための論理を習得することを目標とする。より深い理解のため、グループワークなども活用を行う。

到達目標

1) 遺伝子の塩基配列およびアミノ酸配列から情報を読み解く基礎としての分子進化学を理解する。
2) 遺伝子配列およびゲノム配列を比較することにより得られる知識を理解する。
3) 配列解析における解析アルゴリズムを理解する。
4) マルチオミックス解析の基礎および応用を理解する。
5) 分子動力学シミュレーションの基礎と応用を理解する。

キーワード

バイオインフォマティクス

学生が身につける力

  • 専門力
  • 教養力
  • コミュニケーション力
  • 展開力 (探究力又は設定力)
  • 展開力 (実践力又は解決力)

授業の進め方

各回の学習目標をよく読み,予習・復習を行って下さい。
本授業は、大岡山、すずかけ台両キャンパスに在籍している学生の受講時・グループワーク時に発生する移動負担を軽減し、積極的な履修を推進するため、Zoomなどを活用し行う。

授業計画・課題

授業計画 課題
第1回 生体分子系古典シミュレーションの概要 生体分子系シミュレーションの概要を理解する
第2回 生体分子のモデル化(分子力場ほか) 分子力場を理解する
第3回 生体分子古典シミュレーション法 分子動力学法などを理解する。
第4回 シミュレーション法の応用と解析 シミュレーションの応用や解析法について学ぶ。
第5回 生体分子のコンピュータモデリング シミュレーション法を用いた生体分子のコンピュータモデリングを理解する
第6回 NGSを用いたゲノム情報解析の概要とNGSの原理 NGSを用いたゲノム情報解析の背景を理解する
第7回 マッピングに基づいたNGS解析とそのアルゴリズム (1) マッピング解析に用いられている基本アルゴリズムを理解する (1)
第8回 マッピングに基づいたNGS解析とそのアルゴリズム (2) マッピング解析に用いられている基本アルゴリズムを理解する (2)
第9回 ゲノムアセンブル、RNA-seq解析、ChIP-seq解析におけるアルゴリズム ゲノムアセンブル、RNA-seq解析、ChIP-seq解析におけるアルゴリズムを理解する
第10回 バイオインフォマティクス概論 データベース、ツール群、遺伝子配列、など大規模データの理解
第11回 オミクス解析の基礎 ゲノミクス、トランスクリプトーム、プロテオーム
第12回 群集構造解析のためのメタゲノミクス メタゲノムによる菌群集構造解析の理解
第13回 ヒト腸内細菌とメタゲノミクス ヒト腸内環境解析の理解
第14回 バイオインフォマティクスにおける機械学習とその応用 機械学習の概念とオミクスデータに対する応用例の理解

準備学修(事前学修・復習)等についての指示

学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。

教科書

特になし

参考書、講義資料等

"バイオインフォマティクスのためのアルゴリズム入門" Jones他, 共立出版, 2007年。"Molecular Evolution and Phylogenetics" Nei他, Oxford Univ. Press, 2000年。"バイオインフォマティクスの数理とアルゴリズム" 阿久津他, 共立出版, 2007年。

成績評価の方法及び基準

各回レポートを課し評価する。

関連する科目

  • なし

履修の条件・注意事項

基礎的な物理化学(量子化学および古典力学)
基礎的な数学(微分積分および線形代数)
基礎的な統計物理学
基礎的なゲノミクス