2022 Special graduate degree programs Specially Offered Degree Programs for Graduate Students Tokyo Tech Academy for Convergence of Materials and Informatics
Materials simulation
- Academic unit or major
- Tokyo Tech Academy for Convergence of Materials and Informatics
- Instructor(s)
- Fumiyasu Oba / Yu-Ichiro Matsushita / Nobuaki Yasuo / Susumu Kawauchi / Ryosuke Akashi
- Class Format
- Lecture (HyFlex)
- Media-enhanced courses
- -
- Day of week/Period
(Classrooms) - 1-4 Fri (南4号館 情報ネットワーク演習室 第1演習室、第2演習室, Information Network Exercise Room 1st and 2nd Exercise Room)
- Class
- -
- Course Code
- TCM.A402
- Number of credits
- 200
- Course offered
- 2022
- Offered quarter
- 3Q
- Syllabus updated
- Jul 10, 2025
- Language
- English
Syllabus
Course overview and goals
Computer simulation is a mandatory tool for understanding the structure and functionality of materials. This lecture covers theories and methods on first-principles calculations, which are based on quantum mechanics, and their applications to the understanding of structure and fundamental properties of molecules and solids. The aim of this lecture is to provide specialized knowledge on material design at the atomistic and electronic levels, which is required in current research and development of materials.
Course description and aims
By the end of this course, students will be able to: 1) Understand the basics of first-principles calculations. 2) Discuss material properties from the viewpoint of their atomistic and electronic structures.
Keywords
First-principles calculations, Molecular orbitals, Band structure
Competencies
- Specialist skills
- Intercultural skills
- Communication skills
- Critical thinking skills
- Practical and/or problem-solving skills
Class flow
As a rule, students will attend classes face-to-face. Points from the previous lectures are reviewed at the beginning of each class. The lectures and exercises on new topics are then given. Some classes will be divided into class A (molecular system) and class B (periodic system). The classification will be decided in consultation with the instructor in charge.
Course schedule/Objectives
Course schedule | Objectives | |
---|---|---|
Class 1 | Introduction to material simulations, environment settings of TSUBAME supercomputer, and unix commands | Explain materials simulations. Set up to use TSUBAME supercomputer. Use unix commands. |
Class 2 | Introduction to material simulations, environment settings of TSUBAME supercomputer, and unix commands | Explain materials simulations. Set up to use TSUBAME supercomputer. Use unix commands. |
Class 3 | A) Molecular systems (Introduction to quantum chemical calculation) B) Periodic system (Structural optimization of extended solids) | A) Explain quantum chemical calculation. Carry out quantum chemical calculation on TSUBAME supercomputer B) Carry out a structural optimization calculation and determine the crystal structure. |
Class 4 | A) Molecular systems (Introduction to quantum chemical calculation) B) Periodic system (Structural optimization of extended solids) | A) Explain quantum chemical calculation. Carry out quantum chemical calculation on TSUBAME supercomputer B) Carry out a structural optimization calculation and determine the crystal structure. |
Class 5 | A) Molecular system (Geometry optimization and frequency analysis) B) Periodic system (Electronic structure of extended solids) | A) Carry out geometry optimization and frequency analysis B) Carry out an electronic structure calculation and determine the electronic band structure |
Class 6 | A) Molecular system (Geometry optimization and frequency analysis) B) Periodic system (Electronic structure of extended solids) | A) Carry out geometry optimization and frequency analysis B) Carry out an electronic structure calculation and determine the electronic band structure |
Class 7 | A) Molecular system (Transition state search) B) Periodic system(Defects in extended solids) | A) Carry out transition state search and intrinsic reaction coordinate calculation B) Carry out an electronic structure calculation for a defect structure and analyze the electronic state |
Class 8 | A) Molecular system (Transition state search) B) Periodic system(Defects in extended solids) | A) Carry out transition state search and intrinsic reaction coordinate calculation B) Carry out an electronic structure calculation for a defect structure and analyze the electronic state |
Class 9 | First-principles molecular dynamics (MD) simulation | Carry out a first-principles molecular dynamics (MD) calculation |
Class 10 | First-principles molecular dynamics (MD) simulation | Carry out a first-principles molecular dynamics (MD) calculation |
Class 11 | A) Molecular system Q&A B) Periodic system Q&A | Perform an assigned task or understand how to use the materials simulation method in your own research (prior approval from your supervisor required) |
Class 12 | A) Molecular system Q&A B) Periodic system Q&A | Perform an assigned task or understand how to use the materials simulation method in your own research (prior approval from your supervisor required) |
Class 13 | Latest topics of materials simulations | Understand latest topics of materials simulations. |
Class 14 | Latest topics of materials simulations | Understand latest topics of materials simulations. |
Study advice (preparation and review)
To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.
Textbook(s)
None.
Reference books, course materials, etc.
None.
Evaluation methods and criteria
Evaluations are made based on the exercises.
Related courses
- TCM.A404 : Materials Informatics (R)
Prerequisites
None but fundamental knowledge of periodic systems (e.g., Brilloine zone) is prerequisite for the lectures of periodic systems
Other
Only TAC-MI students can register this course in 2022.