トップページへ

2021 Faculty Courses School of Materials and Chemical Technology Department of Chemical Science and Engineering Graduate major in Nuclear Engineering

Nuclear Reactor Physics and Radiation Measurement Special Laboratory

Academic unit or major
Graduate major in Nuclear Engineering
Instructor(s)
Toru Obara / Yoshiyuki Oguri / Tatsuya Katabuchi / Yoshinao Kobayashi / Chikako Ishizuka / Jun Nishiyama
Class Format
Experiment
Media-enhanced courses
-
Day of week/Period
(Classrooms)
5-8 Thu (原講571, North Bidg. 2, 5F-571)
Class
-
Course Code
NCL.N608
Number of credits
002
Course offered
2021
Offered quarter
2Q
Syllabus updated
Jul 10, 2025
Language
English

Syllabus

Course overview and goals

To assist the education of laboratory experiment related to basic nuclear engineering for graduate students. The experiment consists of nuclear reactor physics and radiation measurement. To assist the preparation, improvement and enforcement of the experimental education including lectures.

Course description and aims

Students have the ability of assisting the following experimental education for graduate students:
(1) Nuclear-reactor physics: Principle and methods in reactor physics experiments using nuclear reactor
(2) Radiation‐measurement: Operating principles of ionizing radiation detectors and gamma-ray spectrometry

Keywords

Reactor physics, Criticality approach, criticality calculation, reactor kinetics, Radiation-matter interaction, Scintillation detector, Germanium semiconductor detector, Multichannel pulse-height analyzer, Energy spectrum

Competencies

  • Specialist skills
  • Intercultural skills
  • Communication skills
  • Critical thinking skills
  • Practical and/or problem-solving skills

Class flow

To assist the preparation, improvement and enforcement of the experimental education

Course schedule/Objectives

Course schedule Objectives
Class 1 1. Criticality approach experiment 2. Period method and compensation method 3. Rod drop method 4. Nuclear reactor operation 5. Gamma-ray measurement using a scintillation detector 6. Gamma-ray measurement using a germanium semiconductor detector 1. Students must be able to explain about the fundamental theory in critical approach experiment and perform criticality calculation, be able to estimate criticality mass by the inverse multiplication in criticality approach experiment, and be able to judge of criticality of nuclear reactor. 2. Student must be able to calculate control rod worth from the result of experiments by period method and compensation method. 3. Student must be able to calculate control rod worth from the result of experiments by rod drop method. 4. Student must be able to explain about the fundamentals of nuclear reactor operation 5. Students must be able to perform absolute measurement of radioactivity using scintillation gamma-ray detectors 6. Students must be able to perform identification of radionuclides by gamma-ray spectroscopy using germanium semiconductor detectors

Study advice (preparation and review)

To enhance effective learning, students are encouraged to spend approximately 50 minutes preparing for class and another 50 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.

Textbook(s)

Tsuyosi Misawa, Hironobu Unesaki, Cheolho Pyen, ”Nuclear Reactor Physics Experiments”, Kyoto University Press (2010).

Reference books, course materials, etc.

John R. Lamarsh, “Introduction to Nuclear Reactor Theory”, Addison-Wesley Publishing Company, Inc. (1965).

James J. Duderstadt, Louis J. Hamilton, “Nuclear Reactor Analysis”, John Wiley & Sons, Inc. (1976).

George I. Bell, Samuel Glasstone, “Nuclear Reactor Theory”, Robert E. Krieger Publishing Co., Inc. (1970).

Samuel Glasstone, Alexander Sesonske, "Nuclear Reactor Engineering", Chapman & Hall, Inc. (1994).

Weston M. Stacey, “Nuclear Reactor Physics”, WILEY-VCH Verlag GmbH & Co. KGaA (2004).

Raymond L. Murray and Keith E. Holbert, "Nuclear Energy: An Introduction to The Concepts, Systems and Application of Nuclear Processes Seventh Edition", Elsevier Ltd. (2013).

E.E. Lewis, “Fundamentals of Nuclear Reactor Physics”, Academic Press (2008). (PDF file of the book can be downloaded from Tokyo Tech library.

Glenn F. Knoll, "Radiation Detection and Measurement", Wiley, ISBN-13:978-0470131480 (2010).

Evaluation methods and criteria

Participation to experiments (50%) and reports (50%)

Related courses

  • NCL.N402 : Nuclear Reactor Theory I
  • NCL.N406 : Nuclear Reactor Theory II
  • NCL.N401: Basic Nuclear Physics

Prerequisites

It is needed to have fundamental knowledge of nuclear reactor theory. For radiation measurement Laboratory, it is desirable that students have some initial background knowledge on atomic physics.

Contact information (e-mail and phone) Notice : Please replace from ”[at]” to ”@”(half-width character).

yoguri[at]lane.iir.titech.ac.jp (Prof. Oguri, Radiation Measurement Laboratory)
tobara[at]lane.iir.titech.ac.jp (Prof. Obara, Reactor Physics Laboratory)

Office hours

Prior appointment by e-mail is necessary.