2021 Faculty Courses School of Engineering Department of Electrical and Electronic Engineering Graduate major in Energy Science and Engineering
Interdisciplinary Energy Materials Science 2 大岡山
- Academic unit or major
- Graduate major in Energy Science and Engineering
- Instructor(s)
- Hidetoshi Matsumoto / Manabu Ihara / Yoshisato Kimura / Tomohiro Nozaki / Ryota Shimizu
- Class Format
- Lecture
- Media-enhanced courses
- -
- Day of week/Period
(Classrooms) - 1-2 Tue
- Class
- 大岡山
- Course Code
- ENR.A406
- Number of credits
- 100
- Course offered
- 2021
- Offered quarter
- 4Q
- Syllabus updated
- Jul 10, 2025
- Language
- English
Syllabus
Course overview and goals
This course focuses on various materials which are used in modern energy conversion devices. Students will gain the basic knowledge of the physical properties, structures, functions, processes, and the evaluation method of those functional energy materials. Specifically, fuel cell materials, high-temperature energy conversion materials, catalytic materials are highlighted, and the state-of-the-art energy devices and related functional materials will be explained. Energy materials are categorized into metals, ceramics, and polymers in term of their carrier conductivity. A role of those functional materials in energy devices will be explained comprehensively. Moreover, students will obtain the knowledge of the relationship between operating principle and the marginal efficiency of the devices and materials functions.
Course description and aims
By the end of this course, students will be able to:
1. Explain the basics of fuel cell materials.
2. Explain the basics of high-temperature materials.
3. Explain the basics of secondary battery materials.
4. Explain the similarities and differences among these materials.
Keywords
Fuel cells, Solar cells, Batteries, High-temperature materials, Catalysts and catalysis, Thermoelectric materials
Competencies
- Specialist skills
- Intercultural skills
- Communication skills
- Critical thinking skills
- Practical and/or problem-solving skills
Class flow
After the guidance of this course, each material will be explained in two classes.
Course schedule/Objectives
Course schedule | Objectives | |
---|---|---|
Class 1 | Overview of Interdisciplinary Energy Materials Science 2. Basics of structures and properties of polymer materials. | Explain the relationship between energy materials and thermal energy (temperature). |
Class 2 | Ion transport in polymer electrolytes. | Explain the mechanism of ion transport in polymer electrolytes. |
Class 3 | Charge carrier transport in conjugated polymers | Explain the mechanism of charge carrier transport in conjugated polymers. |
Class 4 | Electrical conductivity and plastic deformability of alloys based on metallic bond | Explain the electrical conductivity and plastic deformability of alloys based on understanding metallic bond characteristics. |
Class 5 | Basics of thermoelectric materials and applications for thermoelectric power generation | Understand basics of thermoelectric materials and explain the essence of materials design for the applications focusing on thermoelectric power generation. |
Class 6 | Basics of ionic conduction in inorganic materials | Explain the conduction mechanism of ions such as oxide anions and Li cations |
Class 7 | Energy device applications using inorganic solid electrolyte - oxygen sensor, all-solid Li-battery, fuel cell, etc - | Explain the operating principle of energy devices and materials properties for the applications |
Study advice (preparation and review)
To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.
Textbook(s)
none
Reference books, course materials, etc.
There is no textbook. Reading materials will be distributed if needed.
Evaluation methods and criteria
Evaluation will be based on reports. Report assignments are given by lecturers.
Related courses
- Interdisciplinary scientific principles of energy 1
- Interdisciplinary scientific principles of energy 2
- Interdisciplinary principles of energy devices 1
- Interdisciplinary principles of energy devices 2
- Interdisciplinary Energy Materials Science 1
- Energy system theory
- Recent technologies of fuel cells, solar cells butteries and energy system
Prerequisites
No prerequisites.
Other
Be aware of following course modification for AY2021;
(1) The lectures would be given ONLINE (using Zoom system).
(2) The course comprise a total of 7 lectures (the 8th lecture is canceled).
(3) This course is the substitute for canceled "Interdisciplinary Energy Materials Science 2 Suzukakedai".