2020 Faculty Courses School of Environment and Society Department of Transdisciplinary Science and Engineering Graduate major in Nuclear Engineering
Nuclear Fusion Reactor Engineering
- Academic unit or major
- Graduate major in Nuclear Engineering
- Instructor(s)
- Shunji Iio / Hiroaki Tsutsui / Katsumi Yoshida / Masatoshi Kondo
- Class Format
- Lecture (Zoom)
- Media-enhanced courses
- -
- Day of week/Period
(Classrooms) - 5-6 Tue (原講571, North Bidg. 2, 5F-571) / 5-6 Fri (原講571, North Bidg. 2, 5F-571)
- Class
- -
- Course Code
- NCL.A402
- Number of credits
- 200
- Course offered
- 2020
- Offered quarter
- 2Q
- Syllabus updated
- Jul 10, 2025
- Language
- English
Syllabus
Course overview and goals
We elucidate the present status and prospects of fusion reactors which are considered to be ultimate energy source. Issues and engineering approaches to plasma confinement schemes for fusion reaction control, first walls, blanket, materials, and engineering concerning fusion reactor design are lectured.
Course description and aims
To understand the engineering issues to realize fusion reactors by obtaining knowledge about nuclear fusion reactions, plasmas, cooling, fusion materials, etc.
Keywords
nuclear fusion, plasma, magnetic confinement, tokamak, helical devices, blanket, neutron irradiation, cooling, fusion materials, super conducting magnet, plasma heating, plasma diagnostics
Competencies
- Specialist skills
- Intercultural skills
- Communication skills
- Critical thinking skills
- Practical and/or problem-solving skills
Class flow
Lectured are given by four professors.
Course schedule/Objectives
Course schedule | Objectives | |
---|---|---|
Class 1 | Fusion reactions and inertial confinement | Students shall understand and explain nuclear fusion reactions and inertial confinement. fusion. |
Class 2 | Fundamental prpperties of plasmas | Students shall understand and explain fundamental characteristics of plasma. |
Class 3 | MHD equations and MHD equilibrium | Students shall understand and explain MHD equation and its equilibria. |
Class 4 | MHD instabiliites | Students shall understand and explain MHD instabilities. |
Class 5 | History of research for magnetic confinement and tokamak devices | Students can explain histories of research for magnetic confinement and tokamak devices. candidate coolants in fusion blanket. |
Class 6 | Plasma heating and current drive, plasma diagnostics and superconducting magnets | Students can explain roles of plasma heating and current drive, plasma diagnostics and superconducting magnets in fusion devices. |
Class 7 | Experimental fusion reactor ITER | Students can explain an experimental fusion reactor, ITER. |
Class 8 | Tritium fuel cycle in fusion reactors | Students can explain tritium fuel cycle in fusion reactors |
Class 9 | Tritium behaviors in various materials of fusion reactors | Students can explain tritium behaviors in various materials of fusion reactors. |
Class 10 | Safety issuses on fusion reacors | Students canexplain liquid metal MHD in fusion blanket. |
Class 11 | Current status and issues of fusion materials under severe condition (1) | Students can explain current status and issues of fusion materials under severe conditions. |
Class 12 | Current status and issues of fusion materials under severe condition (2) | Students can explain current status and issues of fusion materials under severe conditions. |
Class 13 | Design of fusion reactors | Students shall understand and explain design of fusion reactors. |
Class 14 | Tokamak prototype fusion reactors | Students can explain tokamak prototype fusion reactors. |
Study advice (preparation and review)
To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.
Textbook(s)
Nothing in particular, but some handouts and/or slides are uploaded to OCW-i.
Reference books, course materials, etc.
Wston M. Stacey,""Fusion"", Wiley Interscience
K. Miyamoto, "Fundamentals of Plasma Physics and Controlled Fusion", NIFS-PROC-48, 2000
Evaluation methods and criteria
Reports the themes of which are given during lectures.
Related courses
- NCL.N401 : Basic Nuclear Physics
- NCL.N403 : Nuclear Materials and Structures
Prerequisites
None required.