トップページへ

2020 Faculty Courses School of Computing Undergraduate major in Computer Science

Machine Learning

Academic unit or major
Undergraduate major in Computer Science
Instructor(s)
Naoaki Okazaki
Class Format
Lecture (Zoom)
Media-enhanced courses
-
Day of week/Period
(Classrooms)
7-8 Tue (S011) / 7-8 Fri (S011)
Class
-
Course Code
CSC.T254
Number of credits
200
Course offered
2020
Offered quarter
4Q
Syllabus updated
Jul 10, 2025
Language
Japanese

Syllabus

Course overview and goals

Machine Learning is a "field of study that gives computers the ability to learn without being explicitly programmed" (Arthur Samuel, 1959). With the advances in theories and algorithms, big data, and computation power, machine learning recently showed an astonishing progress, applied to various fields other than computer science. This lecture introduces the foundamental concepts and theories of machine learning that are essential for any engineers to apply machine learning technologies. This lecture also provides exercises where students can cultivate the skill for implementing the theories and algorithm as computer programs in Python.

Course description and aims

* Acquire knowledge about the foundamental concepts and theories of machine learning
* Understand the theories and algorithms through implementations
* Learn the basic skill for data processing

Keywords

regression, classification, clustering, dimensionality reduction, reignforce learning

Competencies

  • Specialist skills
  • Intercultural skills
  • Communication skills
  • Critical thinking skills
  • Practical and/or problem-solving skills

Class flow

This class consists of: lectures explaining the concepts and theories; and exercises to realize them on computers

Course schedule/Objectives

Course schedule Objectives
Class 1

Introduction, Essentials of Python programming

Introduction to machine learning, Python programming

Class 2

Data Visualization

Reading/writing data, line chart, bar chart, plot, heatmap

Class 3

Linear Regression

least squares method, maximum likelihood estimation, gradient method, evaluation, overfitting, regularization

Class 4

Linear Classification (1)

threshold logic unit, binary classification, perceptron, logistic regression, evaluation

Class 5

Linear Classification (2)

Multi-class classification, softmax function

Class 6

Exercise 1

Exercise for the classes 3-5

Class 7

Deep Neural Networks (1)

activation function, computation graph, automatic diffrentiation, backpropagation

Class 8

Multilayer Neural Networks (2)

convolutional neural networks, dropout, mini-batch optimization

Class 9

Support Vector Machine

margin, duality, support vectors, kernel functions, multi-class classification

Class 10

Exercise 2

Exercise for the classes 7-9

Class 11

Clustering

Hierarchical clustering, K-means

Class 12

Dimentionality Reduction

principal component analysis, singular value decomposition, random projection

Class 13

Reignforcement Learning

Markov decision process, Bellman equation, value iteration, policy iteration, Q learning

Class 14

Exercise 3

Exercise for the classes 11-13

Study advice (preparation and review)

To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.

Textbook(s)

None

Reference books, course materials, etc.

Cource materials are distributed on OCW-i.

Evaluation methods and criteria

Based on the three reports (60%) and the final exam (40%).

Related courses

  • CSC.T242 : Probability Theory and Statistics
  • CSC.T272 : Artificial Intelligence
  • CSC.T243 : Procedural Programming Fundamentals
  • CSC.T253 : Advanced Procedural Programming
  • CSC.T352 : Pattern Recognition
  • ART.T458 : Advanced Machine Learning

Prerequisites

None