2020 Faculty Courses School of Engineering Department of Electrical and Electronic Engineering Graduate major in Electrical and Electronic Engineering
Fundamentals of Light and Matter I
- Academic unit or major
- Graduate major in Electrical and Electronic Engineering
- Instructor(s)
- Kotaro Kajikawa / Hiro Munekata / Haruhiko Ito
- Class Format
- Lecture (Zoom)
- Media-enhanced courses
- -
- Day of week/Period
(Classrooms) - 3-4 Mon (G221) / 3-4 Thu (G221)
- Class
- -
- Course Code
- EEE.D431
- Number of credits
- 200
- Course offered
- 2020
- Offered quarter
- 1Q
- Syllabus updated
- Jul 10, 2025
- Language
- English
Syllabus
Course overview and goals
Fundamentals of optics and optical properties of matters are lectured for the students who majors in electronics and applied physics. It is also open for the students in other departments who are interested in the optics and optical properties of matters. The lecture is divided into three parts: (a) electromagnetic wave and matter by Prof. Kajikawa (b) fundamentals of quantum optics by Prof. Ito and (c) fundamentals of optical properties of condensed matters by Prof. Munekata. In (a), the students learn light propagation in a matter, refractive index, polarization, light reflection and refraction, optical waveguide, optical fiber and spectroscopy. In (b), we quantize electric magnetic fields and examine photon number states and coherent states using an operator method. Then, we learn the relation between atomic energy structures and orbital and spin angular momenta, and solve selection rules on optical transitions. We also learn the fundamentals of laser oscillation. In (c), students will learn the qualitative origin of energy bands in solids, together with fundamental concept of absorption of light in solids, quantum size effect, and light emitters / detectors.
This lecture is for the students in Department of Electrical and Electronic Engineering. The students belonging to other courses are also recommended to have this lecture who are going to learn Fundamentals of Light and Matter IIa, IIb and IIc.
Course description and aims
The students will understand:
(a) propagation in a matter, refractive index, polarization, light reflection and refraction, optical waveguide, optical fiber and spectroscopy.
(b) algebraic calculations with creation and annihilation operators, photon number states and coherent states, label of atomic energy levels with angular momenta, selection rules, and lasing property.
(c) why energy states as well as light absorption/emission spectra become broad in solids.
Keywords
refractive index, optical waveguide, light reflection and refraction, spectroscopy, quantum optics, laser, semiconductor, light emitting diodes, photo-diodes
Competencies
- Specialist skills
- Intercultural skills
- Communication skills
- Critical thinking skills
- Practical and/or problem-solving skills
Class flow
After the lecture, students will have exercise problems.
Course schedule/Objectives
Course schedule | Objectives | |
---|---|---|
Class 1 | propagation in a matter, refractive index, polarization | Understand the origin of refractive index and polarization |
Class 2 | Light absorption spectrum in solids, energy bands, lattice vibration | Understand microscopic origin of light absorption in visible and infrared wavelength regions. |
Class 3 | phase velocity and group velocity, light reflection and refraction. | Understand phase velocity and group velocity, light reflection and refraction |
Class 4 | Principles of light absorption and emission in solids | Understand importance of momentum and energy conservation. |
Class 5 | total reflection and optical waveguide. | Understand total reflection and optical waveguide |
Class 6 | optical fiber | Understand the optical fiber and optical mode |
Class 7 | infrared spectroscopy, visible light spectroscopy, . | Understand the principles of the spectroscopy methods |
Class 8 | Raman spectroscopy, photoelectron spectroscopy | Understand the principles of the spectroscopy methods |
Class 9 | quantization of light | Quantize electric magnetic fields |
Class 10 | photon number states and coherent states | Understand calculations with creation and annihilation operators and optical quantum states. |
Class 11 | atomic energy and angular momentum | Express atomic energy levels with angular momenta. |
Class 12 | optical transition | Solve energy level splits due to the spin-orbital interaction and selection rules on photon absorption and emission. |
Class 13 | stimulated emission and population inversion | Understand the stimulated emission and the population inversion for lasers. |
Class 14 | laser oscillation | Understand the principle of laser oscillation. |
Study advice (preparation and review)
To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.
Textbook(s)
None. In (b), a lecture note is distributed.
Reference books, course materials, etc.
G. R. Fowles: Introduction to Modern Optics, Dover ISBN0-486-65967-7
C. Kittel: Introduction to Solid State Physics (either 6, 7, 8th edition), (8th ed. ISBN-10: 0471111813)
Evaluation methods and criteria
Students' knowledge of optics and optical properties of matters, and their ability to apply them to problems will be assessed.
Final exams approx 70%, exercise problems 30%.
Related courses
- EEE.D531 : Fundamentals of Light and Matter IIa
- EEE.D532 : Fundamentals of Light and Matter IIb
- EEE.D533 : Fundamentals of Light and Matter IIc
Prerequisites
None