トップページへ

2025年度 (最新) 学位プログラムとして特別に設けた教育課程 学位プログラムとして特別に設けた教育課程 データサイエンス・AI全学教育機構

応用実践データサイエンス・AI発展第二B

開講元
データサイエンス・AI全学教育機構
担当教員
金﨑 朝子 / 富井 規雄 / 宮﨑 慧 / 奥村 圭司 / 佐久間 淳 / 小野 功 / 三宅 美博 / 新田 克己
授業形態
講義
メディア利用科目
-
曜日・時限
(講義室)
水7-8 (M-B07(H101),, J2-303(J234))
クラス
-
科目コード
DSA.P622
単位数
100
開講時期
2025年度
開講クォーター
2Q
シラバス更新日
2025年3月19日
使用言語
日本語

シラバス

授業の目的(ねらい)、概要

この授業科目は、人工知能やデータサイエンス技術の社会実装の現状と最先端技術を理解し、それらの技術の応用可能性と課題を考察することを目的としている。各回の授業において、建築、IT、金融、材料等のさまざま分野の企業の講師がデータサイエンスや人工知能を用いた技術開発や商品開発の事例を紹介する。
幅広い分野におけるデータサイエンスや人工知能技術の応用事例に関する知識を獲得し、課題レポートによって社会応用に関する考察内容を説明することによって、受講生が実社会において活躍する広い視野を得ることを目標にしている。

到達目標

この授業科目は、データサイエンスと人工知能の社会実装に関する理解を深め、受講生が実社会において活躍する能力を高めることを目標にしている。

実務経験のある教員等による授業科目等

実務経験と講義内容との関連 (又は実践的教育内容)

本講義は三井住友カード株式会社、J-Power 電源開発株式会社、株式会社リクルート、三菱電機株式会社、住友重機株式会社、大和ハウス工業株式会社におけるAIやデータサイエンスの社会実装の技術をそれぞれの企業の講師の方に講義していただく。

キーワード

人工知能、データサイエンス、機械学習、金融、AIビジネス、電力、重機械、建設業

学生が身につける力

  • 専門力
  • 教養力
  • コミュニケーション力
  • 展開力 (探究力又は設定力)
  • 展開力 (実践力又は解決力)

授業の進め方

この科目はハイフレックス型に分類されているが、大岡山とすずかけ台の所定の教室でしか受講できない。

授業計画・課題

授業計画 課題
第1回 キャッシュレスデータとAIによるビジネス創造 実例で学ぶ ビジネス現場でのデータ・AIを活用した価値創造
第2回 JパワーのDSAI活用と研究開発:自律飛行ドローン開発を例に 本講義では、JパワーにおけるDSAIの活用例として自律飛行ドローン開発と電力価格予測を紹介する。
第3回 機械学習とデータ利活用のビジネス応用ワークショップ(1) ジネス課題における重要な意思決定を支えるデータサイエンス技術とその活用に向けた思考方法を紹介する
第4回 機械学習とデータ利活用のビジネス応用ワークショップ(2) データサイエンス技術を社会実装する際の課題とその解決策について、事例を交えて紹介する
第5回 人工知能技術の産業応用 人工知能技術の実用化事例を紹介しながら、 課題に応じたアルゴリズムの適切な選定技能を習得する。
第6回 重機械の情報技術 なかなか想像しづらい、重機械と人と情報技術の関係、課題について
第7回 建設DXの歩みと求めるデジタル人財の姿 社会で活用されたデジタル技術とその求められるスキルについて学ぶ

準備学修(事前学修・復習)等についての指示

学修効果を上げるため,配布資料の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。

教科書

指定しない。

参考書、講義資料等

講義資料は事前にScience Tokyo LMSに掲載する。

成績評価の方法及び基準

期末試験は実施しない。毎回の課題レポートと期末レポートにより評価する。

関連する科目

  • XCO.T487 : 基盤データサイエンス
  • XCO.T488 : 基盤データサイエンス演習
  • XCO.T489 : 基盤人工知能
  • XCO.T490 : 基盤人工知能演習

履修の条件・注意事項

本講義は博士後期課程の学生だけが履修できる。博士後期課程以外の方はDSA.P422「応用実践データサイエンス・AI第二B」を受講すること。

連絡先 (メール、電話番号) ※”[at]”を”@”(半角)に変換してください。

金崎朝子,新田克己,富井規雄
lecture_ap[at]dsai.isct.ac.jp

オフィスアワー

メールで事前予約すること。

その他

・本授業科目はアントレプレナーシップ科目とみなせる専門科目である。本科目が対応するGAはGA0D・GA1Dである
・本科目は2023年度まで開講していた応用AI・データサイエンス発展D(XCO.T690)に対応している。応用AI・データサイエンス発展Dを履修した方は本科目を履修することはできない。