2024年度 H27年度以前入学者向け 理学部 数学科
解析学演習A第一
- 開講元
- 数学科
- 担当教員
- 隠居 良行 / 木下 真也
- 授業形態
- 演習 (対面型)
- メディア利用科目
- -
- 曜日・時限
(講義室) - 月5-8 (M-B104(H103))
- クラス
- -
- 科目コード
- ZUA.C202
- 単位数
- 020
- 開講時期
- 2024年度
- 開講クォーター
- 1~2Q
- シラバス更新日
- 2025年3月17日
- 使用言語
- 日本語
シラバス
授業の目的(ねらい)、概要
本科目は「解析概論第一(ZUA.C201)」の演習である.「解析概論第一」で扱われる講義の内容について,問題演習を行う.
到達目標
・切断による無理数の構成を理解する.
・上極限・下極限の概念に親しむ.
・数列と関数の極限に関する命題をイプシロン・デルタ論法により表現し証明できるようになる.
・連続関数の性質(中間値の定理,最大最小値の存在)を理解する.
・テイラー展開や漸近展開による関数の多項式近似ができるようになる.
・関数列の一様収束と各点収束の違いを理解する
・べき級数の収束円内での微分積分に習熟する.
・多変数関数の1次近似としての微分(全微分)の意味を理解する.
・勾配ベクトルと偏微分の関係を理解する.
・合成関数の偏微分を計算できるようになる
・ラグランジュの未定乗数法の原理を理解する.
キーワード
実数の連続性,上限,下限,上極限,下極限,コーシー列,
連続関数,微分,テイラー展開
一様収束,べき級数,全微分,偏微分,多変数のテイラー展開
逆関数定理,陰関数定理,ラグランジュの未定乗数法
学生が身につける力
- 専門力
- 教養力
- コミュニケーション力
- 展開力 (探究力又は設定力)
- 展開力 (実践力又は解決力)
授業の進め方
問題演習を行う.毎週のレポート課題に加え,小テストも適宜行う.
授業計画・課題
授業計画 | 課題 | |
---|---|---|
第1回 | 解析概論第一(ZUA.C201)の第1回の内容に関する問題演習 | 講義中に指示する. |
第2回 | 解析概論第一(ZUA.C201)の第2回の内容に関する問題演習 | 講義中に指示する. |
第3回 | 解析概論第一(ZUA.C201)の第3回の内容に関する問題演習 | 講義中に指示する. |
第4回 | 解析概論第一(ZUA.C201)の第4回の内容に関する問題演習 | 講義中に指示する. |
第5回 | 解析概論第一(ZUA.C201)の第5回の内容に関する問題演習 | 講義中に指示する. |
第6回 | 解析概論第一(ZUA.C201)の第6回の内容に関する問題演習 | 講義中に指示する. |
第7回 | 解析概論第一(ZUA.C201)の第7回の内容に関する問題演習 | 講義中に指示する. |
第8回 | 解析概論第一(ZUA.C201)の第8回の内容に関する問題演習 | 講義中に指示する. |
第9回 | 解析概論第一(ZUA.C201)の第9回の内容に関する問題演習 | 講義中に指示する. |
第10回 | 解析概論第一(ZUA.C201)の第10回の内容に関する問題演習 | 講義中に指示する. |
第11回 | 解析概論第一(ZUA.C201)の第11回の内容に関する問題演習 | 講義中に指示する. |
第12回 | 解析概論第一(ZUA.C201)の第12回の内容に関する問題演習 | 講義中に指示する. |
第13回 | 解析概論第一(ZUA.C201)の第13回の内容に関する問題演習 | 講義中に指示する. |
第14回 | 解析概論第一(ZUA.C201)の第14回の内容に関する問題演習 | 講義中に指示する. |
準備学修(事前学修・復習)等についての指示
学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。
教科書
なし
参考書、講義資料等
「解析入門I」,「解析入門II」,杉浦光夫著,東京大学出版会
「解析入門」,柳田英二,裳華房
「解析入門I」,「解析入門II」,小平邦彦著,岩波書店
「解析概論」,高木貞二著,岩波書店
「数学解析(上)」「数学解析(下)」,溝畑茂著,朝倉書店
成績評価の方法及び基準
演習における問題の解答状況などにより評価する.詳細は演習中に指示する.
関連する科目
- ZUA.C201 : 解析概論第一
- MTH.C201 : 解析学概論第一
- MTH.C202 : 解析学概論第二
履修の条件・注意事項
微分積分学第一・演習,微分積分学第二,同演習,線形代数学第一・演習,線形代数学第2,同演習などを履修済みであることを前提とする.